Learning Objectives

- Understand how to find the inner product of two vectors in \mathbb{R}^n
- Understand how to find the length of a vector in \mathbb{R}^n
- Understand how to normalize a vector in \mathbb{R}^n
- Understand how to find the distance between two vectors in \mathbb{R}^n
- Determine whether two vectors in \mathbb{R}^n are orthogonal to each other

The Inner Product

Example: Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$ for $\mathbf{u} = \begin{bmatrix} 6 \\ -2 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$.

Remark: Properties (b) and (c) can be combined to get the following rule:

The Length of a Vector

Let **v** be the vector in \mathbb{R}^n whose entries are v_1, v_2, \ldots, v_n .

Example: Let $\mathbf{v} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$. Find a vector \mathbf{u} in \mathbb{R}^2 of length 1 that is *in the same direction* as \mathbf{v} .

<u>Distance in \mathbb{R}^n </u>

Definition: For \mathbf{u} and \mathbf{v} in \mathbb{R}^n , the **distance between u and v**, denoted dist (\mathbf{u}, \mathbf{v}) , is the length of the vector _____. That is,

 $dist(\mathbf{u}, \mathbf{v}) =$

Remark: This is the usual formula for distance in \mathbb{R}^2 and \mathbb{R}^3 .

Example: Compute the distance between the vectors $\mathbf{u} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Orthogonal Vectors

Example: Let **u** and **v** be vectors in \mathbb{R}^n . Find $[\operatorname{dist}(\mathbf{u}, \mathbf{v})]^2$ and $[\operatorname{dist}(\mathbf{u}, -\mathbf{v})]^2$.

Consider \mathbb{R}^2 or \mathbb{R}^3 and two lines through the origin determined by vectors **u** and **v** as shown in the figure below. Notice that these lines are perpendicular if and only if the distance from **u** to **v** is the same as the distance from **u** to $-\mathbf{v}$ (which is the same as requiring the squares of the distances to be the same).

Use your answers from the example above to determine when two lines are <u>perpendicular</u> to each other.

Definition: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** (to each other) if _

Theorem 6.2 (The Pythagorean Theorem): Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$||{f u} + {f v}||^2 =$$

Example: (Exercise 24.) Verify the *parallelogram law*, shown below, for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n .

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$

Orthogonal Complements

Definition: If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be

The set of all vectors \mathbf{z} that are orthogonal to W is called the _____

of W, denoted by W^{\perp} .

Example 6. (pg. 336 in text) Let W be a plane through the origin in \mathbb{R}^3 and let L be the line through the origin and perpendicular to W. Suppose that \mathbf{z} and \mathbf{w} are nonzero, \mathbf{z} is on L, and \mathbf{w} is in W.

Remark: Some important facts:

- A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to ______ in a spanning set for W.
- W^{\perp} is a of \mathbb{R}^n .

Proof: