The matrix of a linear transformation

Definition: If V and W are vector spaces, $T: V \rightarrow W$ is a linear transformation, $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for V, and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \ldots, \mathbf{c}_{\mathbf{m}}\right\}$ is a basis for W, then there is a matrix M such that

$$
M[\mathbf{v}]_{\mathcal{B}}=[T(\mathbf{v})]_{\mathcal{C}}
$$

The matrix M is given by the formula

$$
M=\left[\begin{array}{lll}
{\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{\mathbf{n}}\right]_{\mathcal{C}}}
\end{array}\right]
$$

Linear transformations from V to V

As a special case of the previous construction, we can consider linear transformations from a vector space to itself, so we only choose one basis.

Definition: If V is a vector space, $T: V \rightarrow V$ is a linear transformation, and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for V, then the \mathcal{B}-matrix for T is the matrix $[T]_{\mathcal{B}}$ that satisfies the formula

$$
=[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

The matrix $[T]_{\mathcal{B}}$ is given by the formula

$$
[T]_{\mathcal{B}}=[\quad]
$$

Linear transformations on \mathbb{R}^{n}

Theorem 5.8: If $A=P D P^{-1}$ with D an $n \times n$ diagonal matrix, and \mathcal{B} is the basis of \mathbb{R}^{n} consisting of the columns of P, then D is the \qquad for the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

