Learning Objectives

- Determine if a matrix is diagonalizable
- Understand how to diagonalize a matrix

Definition: A square matrix is			if A is similar to a
diagonal matrix, that is, if		_for some	matrix
P and some	$_$ matrix D .		

When is A Diagonalizable?

The previous example had $A = PDP^{-1}$ with $A = \begin{bmatrix} 0 & 2 \\ -4 & 6 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, and $D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$. Compute

$$\begin{bmatrix} 0 & 2 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$$

What does this tell you about $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$ with respect to A?

What can you conclude about how P and D are constructed?

Verify that another diagonalization of A is
$$A = P_1 D_1 P_1^{-1}$$
, where $P_1 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ and $D_1 = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$.

Remark: *A* is diagonalizable if and only if *A* has enough eigenvectors to form a basis of _____. We call such a basis an **eigenvector basis** of _____.

Diagonalizing Matrices

Step 1. Find the eigenvalues of A.
Step 2. Find n linearly independent eigenvectors of A (if possible).
Step 3. Construct P from the vectors in Step 2.
Step 4. Construct D from the corresponding eigenvalues.

Theorem 5.6: An $n \times n$ matrix with is diagonalizable.

Remark: The previous theorem provides a <u>sufficient</u> condition for a matrix to be diagonalizable. However, it is not <u>necessary</u> for an $n \times n$ matrix to have n distinct eigenvalues in order to be diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct

Theorem 5.7: Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$.

- (a) For $1 \leq k \leq p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- (b) The following statements are equivalent. That is, they are either all true or all false:
 - (i) A is diagonalizable.
 - (ii) The sum of the dimensions of the distinct eigenspaces of A equals n.
 - (iii) For each $1 \le k \le p$, the dimension of the eigenspace for λ_k equals the multiplicity of λ_k .
- (c) If A is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets $\mathcal{B}_1, \ldots, \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .