Learning Objectives

- Determine if a matrix is diagonalizable
- Understand how to diagonalize a matrix

Definition: A square matrix is \qquad if A is similar to a diagonal matrix, that is, if \qquad for some \qquad matrix P and some \qquad $\operatorname{matrix} D$.

When is A Diagonalizable?

The previous example had $A=P D P^{-1}$ with $A=\left[\begin{array}{rr}0 & 2 \\ -4 & 6\end{array}\right], P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, and $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$.
Compute
$\left[\begin{array}{rr}0 & 2 \\ -4 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\quad\left[\begin{array}{rr}0 & 2 \\ -4 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=$
What does this tell you about $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ with respect to A ?

What can you conclude about how P and D are constructed?

Verify that another diagonalization of A is $A=P_{1} D_{1} P_{1}^{-1}$, where $P_{1}=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$ and $D_{1}=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$.

Theorem 5.5 (The Diagonalization Theorem):

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent
\qquad . In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only
if the \qquad of P are n linearly independent \qquad of
A. In this case, the \qquad entries of D are \qquad of A that correspond, respectively, to the eigenvectors in P.

Remark: A is diagonalizable if and only if A has enough eigenvectors to form a basis of \qquad .
We call such a basis an eigenvector basis of \qquad .

$\underline{\text { Diagonalizing Matrices }}$

Step 1. Find the eigenvalues of A.
Step 2. Find n linearly independent eigenvectors of A (if possible).
Step 3. Construct P from the vectors in Step 2.
Step 4. Construct D from the corresponding eigenvalues.

Theorem 5.6: An $n \times n$ matrix with is diagonalizable.

Remark: The previous theorem provides a sufficient condition for a matrix to be diagonalizable. However, it is not necessary for an $n \times n \overline{\text { matrix to }}$ have n distinct eigenvalues in order to be diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct

Theorem 5.7: Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{p}$.
(a) For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
(b) The following statements are equivalent. That is, they are either all true or all false:
(i) A is diagonalizable.
(ii) The sum of the dimensions of the distinct eigenspaces of A equals n.
(iii) For each $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} equals the multiplicity of λ_{k}.
(c) If A is diagonalizable and \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

