Learning Objectives

- Understand how to find the characteristic equation of a matrix
- Understand how to find the eigenvalues of a matrix

How Do We Find Eigenvalues?

Let A be an $n \times n$ matrix.

- λ is an eigenvalue of A if and only if the equation _____ has a nontrivial solution.
- By the invertible matrix theorem, this happens if and only if the matrix $(A \lambda I)$ is **not**
- A matrix is **not** invertible if and only if the determinant of that matrix is equal to _____.
- Therefore, to find the eigenvalues of A, we must find all scalars λ such that

 $\det(A - \lambda I) = \underline{\qquad}.$

Example: Find the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}$.

Remark: If $\lambda = 0$ is an eigenvalue of A, then $det(A - \lambda I) = 0$ simplifies to ______ and we can conclude that A is **not** ______.

The Characteristic Equation

Definition: The equation _______ is called the **characteristic equation** of A. A scalar λ is an eigenvalue of a matrix A if and only if λ satisfies the characteristic equation of A.

If A is an $n \times n$ matrix, then det $(A - \lambda I)$ is a ______ of degree ______ called the **characteristic polynomial** of A.

The **multiplicity** of an eigenvalue λ is its multiplicity as a root of the characteristic equation.

Example: The characteristic polynomial of a 6×6 matrix is $\lambda^6 - 4\lambda^5 - 12\lambda^4$. Find the eigenvalues of the matrix and their multiplicities.

Remarks:

- Because the characteristic equation for an $n \times n$ matrix involves an *n*th degree polynomial, the equation has exactly *n* roots, counting multiplicities, provided that complex roots are allowed.
- In practical work, eigenvalues of any matrix larger than a 2×2 should be found by a computer unless the matrix is triangular or has other special properties.

Similarity

Definition: Let A and B be $n \times n$ matrices.				
A and B are similar if there is an		$_$ matrix P such that		
=	or, equivalently,	=		

Theorem 5.4: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial, and hence the same ______ (with the same multiplicities).

Warnings:

• Matrices with the same eigenvalues do **not** have to be similar. For example, the matrices

$\lceil 2 \rceil$	1]	and	$\left[2\right]$	0
0	2	and	0	2

are $\underline{\mathbf{not}}$ similar even though they have the same eigenvalues.

• Similarity is not the same as row equivalence. Row operations on a matrix usually change its eigenvalues.