Learning Objectives

- Understand how to find the characteristic equation of a matrix
- Understand how to find the eigenvalues of a matrix

How Do We Find Eigenvalues?

Let A be an $n \times n$ matrix.

- λ is an eigenvalue of A if and only if the equation \qquad has a nontrivial solution.
- By the invertible matrix theorem, this happens if and only if the matrix $(A-\lambda I)$ is not
- A matrix is not invertible if and only if the determinant of that matrix is equal to \qquad .
- Therefore, to find the eigenvalues of A, we must find all scalars λ such that

$$
\operatorname{det}(A-\lambda I)=
$$

Example: Find the eigenvalues of $A=\left[\begin{array}{rr}0 & 1 \\ -6 & 5\end{array}\right]$.
Remark: If $\lambda=0$ is an eigenvalue of A, then $\operatorname{det}(A-\lambda I)=0$ simplifies to \qquad and we can conclude that A is not \qquad .

The Characteristic Equation

Definition: The equation \qquad is called the characteristic equation of A. A scalar λ is an eigenvalue of a matrix A if and only if λ satisfies the characteristic equation of A.

If A is an $n \times n$ matrix, then $\operatorname{det}(A-\lambda I)$ is a \qquad of degree \qquad called the characteristic polynomial of A.

The multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic equation.

Example: The characteristic polynomial of a 6×6 matrix is $\lambda^{6}-4 \lambda^{5}-12 \lambda^{4}$. Find the eigenvalues of the matrix and their multiplicities.

Remarks:

- Because the characteristic equation for an $n \times n$ matrix involves an nth degree polynomial, the equation has exactly n roots, counting multiplicities, provided that complex roots are allowed.
- In practical work, eigenvalues of any matrix larger than a 2×2 should be found by a computer unless the matrix is triangular or has other special properties.

Similarity

Definition: Let A and B be $n \times n$ matrices.
A and B are similar if there is an \qquad matrix P such that
\qquad

$$
=
$$

\qquad or, equivalently, \qquad

Theorem 5.4: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial, and hence the same \qquad (with the same multiplicities).

Warnings:

- Matrices with the same eigenvalues do not have to be similar. For example, the matrices

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] \text { and }\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

are not similar even though they have the same eigenvalues.

- Similarity is not the same as row equivalence. Row operations on a matrix usually change its eigenvalues.

