Learning Objective

- Determine if a scalar is an eigenvalue of a matrix
- Determine if a vector is an eigenvector of a matrix
- Understand how to find eigenvectors corresponding to a given eigenvalue
- Understand how to find a basis for an eigenspace corresponding to an eigenvalue
- Understand how to find the eigenvalues of a triangular matrix

Eigenvectors and Eigenvalues

Definition: Let A be an $n \times n$ matrix.

An \qquad of A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=$ \qquad for some scalar \qquad .

A scalar λ is called an \qquad of A if there is a nontrivial solution \mathbf{x} of the equation $A \mathbf{x}=\lambda \mathbf{x}$; such an \mathbf{x} is called an \qquad corresponding to
\qquad .

Remark: λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation \qquad has a nontrivial solution. The set of all solutions to this equation is called the \qquad of A corresponding to \qquad .

Theorem 5.1: The eigenvalues of a triangular matrix are the entries on its -.

Theorem 5.2 If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ is \qquad
\qquad -.

