Learning Objective

- Determine if a scalar is an eigenvalue of a matrix
- Determine if a vector is an eigenvector of a matrix
- Understand how to find eigenvectors corresponding to a given eigenvalue
- Understand how to find a basis for an eigenspace corresponding to an eigenvalue
- Understand how to find the eigenvalues of a triangular matrix

Eigenvectors and Eigenvalues

Definition: Let A be an $n \times n$ matrix.	
An of A is a nonzer some scalar	<u>ro</u> vector x such that $A\mathbf{x} = \underline{\qquad}$ for
A scalar λ is called an the equation $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an	_ of A if there is a <u>nontrivial</u> solution x of corresponding to
·	

Remark: λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation ______ has a nontrivial solution. The set of all solutions to this equation is called the ______ of A corresponding to ______.

Theorem 5.1: The eigenvalues of a triangular matrix are the entries on its

Theorem 5.2 If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is ______