Learning Objective

- Understand how to find a basis for Row A
- Use the Rank Theorem to determine the dimensions of a subspace
- Understand how the Rank Theorem relates to solving a system of linear equations

The Row Space

Definition: If A is an $m \times n$ matrix, the \qquad of A, denoted by Row A, is the set of all \qquad -.

Remarks:

- Each row has \qquad entries, so Row A is a subspace of \qquad .
- The row space of A is the same as the column space of \qquad .

Example: Let $A=\left[\begin{array}{rrrr}-1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6\end{array}\right]$. Find a spanning set for the row space of A.

Theorem 4.13: If two matrices A and B are row equivalent, then their \qquad
\qquad are the same.

If B is in echelon form, then the nonzero rows of B form a \qquad for both

Example: Find bases for the row space, the column space, and the null space of $A=\left[\begin{array}{rrrr}-1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6\end{array}\right]$.

$$
\left[\begin{array}{llll}-1 & 2 & 3 & 6\end{array}\right]
$$

Note that $A \sim B=\left[\begin{array}{rrrr}-1 & 2 & 3 & 6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

The Rank Theorem

Definition: If A is an $m \times n$ matrix, the \qquad of A is the \qquad of the column space of A.

Remark: Since Row A is equal to $\operatorname{Col} A^{T}$, the dimension of the row space of A is the rank of A^{T}.

Theorem 4.14 (The Rank Theorem): The dimensions of the column space and the row space of an $m \times n$ matrix A are \qquad . This common dimension, the rank of A, equals the number of \qquad in A and satisfies the equation
\qquad $+$ \qquad
\qquad

Remark: The dimension of the null space is sometimes called the nullity of A and Theorem 4.14 is sometimes referred to as the Rank-Nullity Theorem.

Example: Let A be a 5×8 matrix.
(a) Find the smallest possible value of $\operatorname{dim} \operatorname{Nul} A$.
(b) If rank $A=5$, find $\operatorname{dim} \operatorname{Nul} A$, dim Row A, and rank A^{T}.

