Learning Objective

- Understand how to find the dimension of a finite-dimensional vector space
- $\bullet\,$ Understand how to find the dimension of Nul
 A and Col $A\,$

The Dimension of a Vector Space

Theorem 4.9: If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$, then any set in V containing more than ______ vectors must be ______.

Theorem 4.10: If a vector space V has a basis of n vectors, then **every** basis of V must consist of **exactly** ______.

Definition: If V is a vector space spanned by a finite set, then V is said to be **finitedimensional** in which case, the ______ of V, written as ______, is the number of vectors in ______.

If V is not spanned by a finite set, then V is **infinite-dimensional**.

Example: The dimension of the zero vector space {**0**} is defined to be _____.

Example: What is the dimension of \mathbb{R}^n ? Justify your answer. (*Hint:* What is the standard basis for \mathbb{R}^n ?)

Example: What is the dimension of \mathbb{P}_2 ? Justify your answer. (*Hint:* What is the standard basis for \mathbb{P}_n ?)

Subspaces of a Finite-Dimensional Space

The following theorem is a counterpart to the Spanning Set Theorem.

Theorem 4.11: Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to ______. In addition, H is finite-dimensional and

 $\dim H \leq$

Theorem 4.12 (The Basis Theorem): Let V be a p-dimensional vector space, $p \ge 1$.

- Any ______ of exactly p elements in V is automatically a basis for V.
- Any set of exactly *p* elements that ______ is automatically a basis for *V*.

The Dimensions of Nul A and Col A

Example: Suppose $A = \begin{bmatrix} 1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix}$. Find dim Nul A and dim Col A.

You may use the fact that

$$\begin{bmatrix} 1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\dim \operatorname{Nul} A = \underline{\qquad} \qquad \text{and} \qquad \dim \operatorname{Col} A = \underline{\qquad}$

Summary:

- dim Nul *A* = _____
- dim Col A =