Learning Objective

- Understand how to find the dimension of a finite-dimensional vector space
- Understand how to find the dimension of $\operatorname{Nul} A$ and $\operatorname{Col} A$

The Dimension of a Vector Space

Theorem 4.9: If a vector space V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than \qquad vectors must be \qquad .

Theorem 4.10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly \qquad

Definition: If V is a vector space spanned by a finite set, then V is said to be finitedimensional in which case, the \qquad of V, written as \qquad is the number of vectors in \qquad -.

If V is not spanned by a finite set, then V is infinite-dimensional.

Example: The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be \qquad .

Example: What is the dimension of \mathbb{R}^{n} ? Justify your answer. (Hint: What is the standard basis for \mathbb{R}^{n} ?)

Example: What is the dimension of \mathbb{P}_{2} ? Justify your answer. (Hint: What is the standard basis for \mathbb{P}_{n} ?)

Subspaces of a Finite-Dimensional Space

The following theorem is a counterpart to the Spanning Set Theorem.

Theorem 4.11: Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to \qquad . In addition, H is finite-dimensional and

$$
\operatorname{dim} H \leq
$$

Theorem 4.12 (The Basis Theorem): Let V be a p-dimensional vector space, $p \geq 1$.

- Any \qquad of exactly p elements in V is automatically a basis for V.
- Any set of exactly p elements that \qquad is automatically a basis for V.

The Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$

Example: Suppose $A=\left[\begin{array}{rrrrr}1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2\end{array}\right]$. Find $\operatorname{dim} \operatorname{Nul} A$ and $\operatorname{dim} \operatorname{Col} A$.
You may use the fact that

$$
\left[\begin{array}{rrrrr}
1 & 2 & -5 & 11 & -3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{dim} \operatorname{Nul} A=$ \qquad and $\quad \operatorname{dim} \operatorname{Col} A=$ \qquad

Summary:

- $\operatorname{dim} \operatorname{Nul} A=$ \qquad
- $\operatorname{dim} \operatorname{Col} A=$ \qquad

