
Math 314 4.4: Coordinate Systems

“Coordinates” probably makes you think of the points on the following “standard” coordinate grid.

We can represent points in the plane using our standard basis for R2, ē1 =

[
1
0

]
and ē2 =

[
0
1

]
, and

plot these points directly, or we could even plot a linear combination.

For example, let x̄ = 2ē1 + 6ē2 =

[
2
6

]
. We can plot this on the above axes.

There are often applications where the coordinate system above doesn’t quite represent what we are
studying. For example, in Calculus you study polar coordinates.

Let’s describe a different coordinate system. Say B = {b̄1, b̄2}, where b̄1 =

[
1
0

]
and b̄2 =

[
1
2

]
. The

“B coordinate grid” is drawn below.

Where should x̄ be on this grid? Well, notice that x̄ =

[
2
6

]
= −1

[
1
0

]
+ 3

[
1
2

]
= −b̄1 + 3b̄2. Let’s plot

this on the B-grid. Does it land where we expect?

It seems like the coefficients of our basis vectors corresponds to the new “coordinates”, that is, (−1, 3)
are the “new” coordinates for x̄ interpreted using B. But how do we find the coordinates in general
if given a different basis?
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Theorem: (The Unique Representation Theorem) Let B = {b̄1, . . . , b̄n} be a basis for a vector
space V . Then for each x̄ in V , there exists a unique unique set of scalars {c1, c2, . . . , cn} such that

x̄ = c1b̄1 + · · ·+ cnb̄n

Proof.

This theorem is incredibly important so that we can define coordinate systems for vector spaces.

Definition: Suppose B = {b̄1, . . . , b̄n} is a basis for V , and let x̄ be in V . The B-coordinates of x̄
B-coordinates of x̄ (or the coordinates of x̄ relative to basis B) are the weights

c1, . . . , cn

so that x̄ = c1b̄1 + · · ·+ cnb̄n.

If c1, . . . , cn are the B-coordinates of x̄, then we let [x̄]B denote the vector

[x̄]B =

c1...
cn


which we call the coordinate vector of x̄ coordinate vector of x̄ (relative to B), or the B-coordinate
vector of x̄.

Example: Let b̄1 =

[
1
0

]
and b̄2 =

[
1
2

]
. B = {b̄1, b̄2} is a basis for R2. Find x̄ so that [x̄]B =

[
−2
3

]
.

Example: Let B = {ē1, ē2} be the standard basis for R2. Find [x̄]B for x̄ =

[
−2
6

]
.

2



Given the coordinate vector of x̄, it’s quick to compute the linear combination. However, it’s a little
more challenging to guess the coefficients for a linear combination if your basis isn’t the standard
basis

Example: Let b1 =

[
3
1

]
, b2 =

[
−1
1

]
, x̄ =

[
−1
5

]
, and B = {b̄1, b̄2}. B is a basis for R2. Find the

coordinate vector [x̄]B of x̄ relative to B.

This example motivates the following definition.

Definition: If B = {b̄1, . . . , b̄n} is a basis for Rn, the change-of-coordinate matrix, change-of-
coordinate matrix, denoted PB, is given by

PB =
[
b̄1 b̄2 · · · b̄n

]
.
[
b̄1 b̄2 · · · b̄n

]
.

In this way, if x̄ = c1b̄1 + · · ·+ cnb̄n, we then have

x̄ =
[
b̄1 b̄2 · · · b̄n

] c1...
cn

 = PB [x̄]B.
[
b̄1 b̄2 · · · b̄n

] c1...
cn

 = PB [x̄]B.

Remark: PB must be invertible! It’s columns are linearly independent, and it’s a square matrix, so
the invertible matrix theorem applies.

Multiplying x̄ = PB[x̄]B on both sides gives us a formula for [x̄]B:

[x̄]B = PB
−1 x̄PB

−1 x̄

We use this to build a useful linear transformation. Let T (x̄) = PB
−1x̄ = [x̄]B. By definition, T sends

x̄ to its coordinates relative to B. We call this the coordinate mapping (determined by B).
Sometimes we’ll suppress the notation, writing x̄ 7→ [x̄]B.
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Example: Let b1 =

[
3
1

]
, b2 =

[
−1
1

]
, x̄ =

[
−1
5

]
, and B = {b̄1, b̄2}. B is a basis. Find the coordinate

vector [x̄]B of x̄ relative to B by using and inverse matrix PB
−1.

The Coordinate Mapping

Understanding the coordinate mapping will help us see how we use coordinates in a useful way for
our purposes.

Example: Let B be the standard basis for P3, that is B = {1, t, t2, t3}. If [p(t)]B =


2
−4
9
0

 determine

p(t).

Example: Let B be as before. Find the coordinate vector of [p(t)]B, the coordinate vector of p(t)
relative to B, if

1. p(t) = 1 + 6t + 4t2.

2. p(t) = −3 + 2t2 + t3

3. p(t) = a0 + a1t + a2t
2 + a3t

3.

Observation: The take-away is that every polynomial in P3 gives a vector in R4, and each vector in
R4 is assigned a unique polynomial in P3. But the similarities go farther!
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Example: Let p(t) = 1 + 6t+ 4t2 and q(t) = −3 + 2t2 + t3, and let B be as before. Find [p(t) + q(t)]B
and [2 · p(t)]B, and compare both to [p(t)]B and [q(t)]B.

Observation: It appears that as vector spaces, P3 and R4 are virtually indistinguishable! Adding and
scaling essentially does the same thing in both situations! Basically, both spaces are the same, and
just represent the same information differently.

Theorem: Let B = {b̄1, . . . , b̄n} be a basis for V . The coordinate mapping x̄ 7→ [x̄]B is a one-to-one
linear transformation from V onto Rn.

The fact that it is one-to-one follows from the fact that every vector is determined by its coordinates
by definition. (In context of the prior page, this means that each polynomial determined the vector.)

Likewise, the map must be onto—this follows from the face that PB
−1x̄ = [x̄]B has at least one

solution by the Invertible Matrix Theorem. (In context of the prior page, this means every vector in
R4 is mapped to.

Through a bit of work, one can show the very surprising fact that its a linear transformation, that
is,

[r1x̄1 + r2x̄2 + · · ·+ rpx̄p]B = r1[x̄1]B + r2[x̄2]B + · · ·+ rp[x̄p]Br1[x̄1]B + r2[x̄2]B + · · ·+ rp[x̄p]B

On the prior page, this was showing that adding or scaling polynomials does the same thing to their
corresponding vectors.

We remarked that P3 and R4 basically are the same space, just represented differently. This is cap-
tured in the following definition.

Definition: A linear transformation from V to W that is both onto and one-to-one is called an
isomorphism. isomorphism.

Our map x̄ 7→ [x̄]B is an isomorphism from a vector space V to Rn. This tells us that even though
the objects of V may not be vectors in Rn, we can really think of them as vectors in Rn.

On the prior page, our vector space was P3. So we’ve displayed an isomorphism between P3 and R4,
which is the math way of saying these are the same as vector spaces.
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This is useful, because we have lots of tools for Rn which can now be extended to vector spaces.

Example: Use coordinate vectors to verify that 1 + 2t2, 4 + t+ 5t2, and 3 + 2t are linearly dependent
in P2.

Remark: The power here is that a computer is very good at row reducing matrices, and so converting
this to a problem about vectors instead of polynomials makes things easier to figure out.

Example: Use coordinate vectors to verify that 1, t, and t2 are linearly independent in P2.

Example: The set B = {1 − t2, t − t2, 2 − 2t + t2} is a basis for P2. Find the coordinate vector of
p(t) = 3 + t− 6t2 relative to B using an inverse matrix PB

−1.
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