Learning Objective

- Determine if a set of vectors is a basis for \mathbb{R}^{n}
- Determine if a set of vectors is a basis for a subspace
- Understand how to find a basis for $\operatorname{Nul} A, \operatorname{Col} A$, or other subspaces

Linearly Independent Sets; Bases

Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in V is said to be linearly independent if the vector equation
has \qquad the trivial solution, $c_{1}=0, \ldots, c_{p}=0$.

The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exist scalars c_{1}, \ldots, c_{p}, not all zero, such that

Some facts from Section 1.7 still hold true for general vector spaces:

- A set containing a single vector \mathbf{v} is linearly \qquad if and only if $\mathbf{v} \neq \mathbf{0}$.
- A set of two vectors is linearly dependent if and only if one of the vectors is a
\qquad -.
- Any set containing \qquad is linearly dependent.

Theorem 4.4: An indexed set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors, with $\mathbf{v}_{1} \neq \mathbf{0}$, is linearly dependent if and only if \mathbf{v}_{j} for some $j>1$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis for H if
(i) \mathcal{B} is a \qquad set, and
(ii) $H=$ \qquad .

Remark: The set $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the columns of the $n \times n$ identity matrix, I_{n}, is called the \qquad basis for \mathbb{R}^{n}.

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

Theorem 4.5 (The Spanning Set Theorem):
Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set in V and let $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
(a) If \mathbf{v}_{k} for some $1 \leq k \leq p$ can be written as a linear combination of the other vectors \mathbf{v}_{j} for $j \neq k$ in S, then the set formed by \qquad from S still spans H.
(b) If $H \neq\{\mathbf{0}\}$, some subset of S is a basis for H.

Theorem 4.6: The \qquad of a matrix A form a basis for $\operatorname{Col} A$.

Summary

- To find a basis for Nul A, use elementary row operations to transform $\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]$ to its reduced row echelon form $\left[\begin{array}{ll}B & \mathbf{0}\end{array}\right]$. Use the reduced row echelon form to find the parametric vector form of the solution set to $A \mathbf{x}=\mathbf{0}$. The vectors found in this parametric form of the solution set are a basis for $\operatorname{Nul} A$.
- To find a basis for $\operatorname{Col} A$, use elementary row operations to reduce A to echelon form and identify the pivot columns of A.

Warning: We must row reduce A to an echelon form in order to identify the pivot columns of A. However, be careful to use the pivot columns of A itself for the basis for $\operatorname{Col} A$ (not the pivot columns of an echelon form of A).

