## Learning Objective

- Understand how to find the null space of an $m \times n$ matrix
- Understand how to find the column space of an $m \times n$ matrix
- Determine if a vector is in $\operatorname{Nul} A$ or $\operatorname{Col} A$
- Understand how to find a nonzero vector in $\operatorname{Nul} A$ or $\operatorname{Col} A$
- Understand how the kernel of a linear transformation relates to the null space
- Understand how the range of a linear transformation relates to the column space


## The Null Space of a Matrix

Definition: The $\qquad$ of an $m \times n$ matrix $A$, denoted $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. In set notation,

$$
\operatorname{Nul} A=
$$

Remark: We can think of $\operatorname{Nul} A$ as the set of all $\mathbf{x}$ in $\mathbb{R}^{n}$ that are mapped into the zero vector of $\mathbb{R}^{m}$ via the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$.

Theorem 4.2: The null space of an $m \times n$ matrix $A$ is a $\qquad$ of $\mathbb{R}^{n}$.
Equivalently, the set of all solutions to a system $A \mathbf{x}=\mathbf{0}$ of $m$ homogeneous linear equations in $n$ unknowns is a subspace of $\mathbb{R}^{n}$.

Proof: Since $A$ has $n$ columns, the solutions to $A \mathbf{x}=\mathbf{0}$ are in $\qquad$ . Therefore, $\operatorname{Nul} A$ is a subset of $\qquad$ . We must check that Nul $A$ satisfies the three properties of a subspace.
1.
2.
3.

## $\underline{\text { An Explicit Description of Nul } \boldsymbol{A}}$

Solving the equation $\qquad$ produces an explicit description of $\operatorname{Nul} A$.
Step 1: Find the general solution of $A \mathbf{x}=\mathbf{0}$.
Step 2: Write the solution in parametric vector form.
Step 3: Use the vectors from Step 2 as a spanning set for $\operatorname{Nul} A$.

## Remarks:

- The spanning set produced by this method is linearly independent.
- When $\operatorname{Nul} A$ contains nonzero vectors, the number of vectors in the spanning set for $\operatorname{Nul} A$ equals the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$.


## The Column Space of a Matrix

Definition: The $\qquad$ of an $m \times n$ matrix $A$, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of $A$. If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{\mathbf{n}}\end{array}\right]$, then

$$
\operatorname{Col} A=
$$

Theorem 4.3: The column space of an $m \times n$ matrix $A$ is a $\qquad$ of $\mathbb{R}^{m}$.

## The Kernel and Range of a Linear Transformation

Definition: A
$T$ from a vector space $V$ into a vector space $W$ is a rule that assigns to each vector $\mathbf{x}$ in $V$ a unique vector $T(\mathbf{x})$ in $W$, such that
(i) $\qquad$ for all $\mathbf{u}, \mathbf{v}$ in $V$, and
(ii) $\qquad$ for all $\mathbf{u}$ in $V$ and all scalars $c$.

The kernel of $T$ is the set of all $\qquad$ such that $\qquad$ (the zero vector in $W$ ).

The range of $T$ is the set of all $\qquad$ of the form $\qquad$ for some $\qquad$ -.

