Learning Objective

- Understand how to find the null space of an $m \times n$ matrix
- Understand how to find the column space of an $m \times n$ matrix
- Determine if a vector is in Nul A or Col A
- Understand how to find a nonzero vector in Nul A or Col A
- Understand how the kernel of a linear transformation relates to the null space
- Understand how the range of a linear transformation relates to the column space

The Null Space of a Matrix

Definition: The ______ of an $m \times n$ matrix A, denoted Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

Nul A =

Remark: We can think of Nul A as the set of all \mathbf{x} in \mathbb{R}^n that are mapped into the zero vector of \mathbb{R}^m via the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$.

Theorem 4.2: The null space of an $m \times n$ matrix A is a ______ of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Proof: Since A has n columns, the solutions to $A\mathbf{x} = \mathbf{0}$ are in _____. Therefore, Nul A is a subset of _____. We must check that Nul A satisfies the three properties of a subspace.

1.

2.

An Explicit Description of Nul A

Solving the equation ______ produces an explicit description of Nul A.

Step 1: Find the general solution of $A\mathbf{x} = \mathbf{0}$.

Step 2: Write the solution in parametric vector form.

Step 3: Use the vectors from Step 2 as a spanning set for Nul A.

Remarks:

- The spanning set produced by this method is linearly independent.
- When Nul A contains nonzero vectors, the number of vectors in the spanning set for Nul A equals the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$.

The Column Space of a Matrix

Definition: The	of an $m \times n$ matrix A, denoted Col A, is
the set of all linear combinations of the columns	of A. If $A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$, then
$\operatorname{Col} A =$	

Theorem 4.3: The column space of an $m \times n$ matrix A is a _____

of \mathbb{R}^m .

The Kernel and Range of a Linear Transformation

Definition: A	T from a vector space V into
a vector space W is a rule that assigns to	each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W ,
such that	
(i)	for all \mathbf{u}, \mathbf{v} in V , and
(ii)	for all \mathbf{u} in V and all scalars c.
The kernel of T is the set of all vector in W).	such that (the zero
The range of T is the set of allsome	of the form for