Learning Objective

- Determine if a set is a subspace of a vector space
- Understand how to find a spanning set of vectors for a subspace of \mathbb{R}^n

Vector Spaces

Many concepts concerning vectors in \mathbb{R}^n can be extended to other mathematical systems.

Definition: A is a nonempty set V of objects along with two operations, called <i>addition</i> and <i>scalar multiplication</i> , such that the following axioms hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for all scalars c and d .		
1 is in V (closed under addition)		
2. $\mathbf{u} + \mathbf{v} = $ (commutativity)		
3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = $ (associativity)		
4. There exists an element in V such that = \mathbf{u} (additive identity)		
5. For every u in V, there is a vector in V such that = 0		
(additive inverses)		
6 is in V (closed under scalar multiplication)		
7. $c(\mathbf{u} + \mathbf{v}) =$ (distributive property for vector addition)		
8. $(c+d)\mathbf{u} = $ (distributive property for scalar addition)		
9. $c(d\mathbf{u}) = $ (associativity of scalar multiplication)		
10. $1\mathbf{u} = ___$ (multiplicative identity)		
The elements of V are called For now, we will assume that our scalar field is \mathbb{R} , i.e. our vector spaces will be "real" vector spaces.		

Remark: Using only these axioms, we can show that the zero vector is unique and additive inverses are unique.

For each \mathbf{u} in V and scalar c,

 $0\mathbf{u} = \mathbf{0}$ $c \mathbf{0} = \mathbf{0}$ $-\mathbf{u} = (-1)\mathbf{u}$

Subpaces

Special subsets of vector spaces are vector spaces themselves.

Definition: A properties:	of a vector space V is a subset H of V that has three
1. The zero vector of V	
2. H is closed under the sum is in H .	That is, for each \mathbf{u} and \mathbf{v} in H ,
3. <i>H</i> is closed under each \mathbf{u} in <i>H</i> and each scalar <i>c</i> , the	That is, for is in H .

Remark: If the subset *H* satisfies these three properties, then *H* itself is a _____

Subpaces Spanned by Sets

Recall: A **linear combination** refers to any sum of scalar multiples of vectors.

Example: Some linear combinations of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are

Recall: Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ denotes the set of all vectors that can be written as linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

Example: Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is the set of all vectors which can be written as _____

Theorem 4.1: If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are vectors in a vector space V, then $\text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a ______ of V.

 $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is called the ______ spanned (or generated) by $\mathbf{v}_1,\ldots,\mathbf{v}_p$.

Examples of Vector Spaces

Example. \mathbb{R}^n for $n \ge 1$ with component-wise addition and scalar multiplication is a vector space.

Example. For $n \ge 0$, let

 \mathbb{P}_n = the set of all polynomials of degree at most n

Elements of \mathbb{P}_n have the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

where the coefficients a_0, a_1, \ldots, a_n and the variable t are real numbers.

 \mathbb{P}_n with point-wise (like-term) addition and scalar multiplication is a vector space.

Examples of Subspaces

Example. $H = \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$ is a subspace of \mathbb{R}^3 .

Important Note: The vector space \mathbb{R}^2 is **not** a subspace of \mathbb{R}^3 because \mathbb{R}^2 is not even a subset of \mathbb{R}^3 . (Vectors in \mathbb{R}^3 have three entries, and vectors in \mathbb{R}^2 have only two entries, so we cannot relate the two spaces.)