Learning Objective

- Determine if a set is a subspace of a vector space
- Understand how to find a spanning set of vectors for a subspace of \mathbb{R}^{n}

Vector Spaces

Many concepts concerning vectors in \mathbb{R}^{n} can be extended to other mathematical systems.

Definition: A \qquad is a nonempty set V of objects along with two operations, called addition and scalar multiplication, such that the following axioms hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for all scalars c and d.

1. \qquad is in V (closed under addition)
2. $\mathbf{u}+\mathbf{v}=$ \qquad (commutativity)
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=$ \qquad (associativity)
4. There exists an element \qquad in V such that \qquad $=\mathbf{u}($ additive identity $)$
5. For every \mathbf{u} in V, there is a vector \qquad in V such that \qquad $=0$ (additive inverses)
6. \qquad is in V (closed under scalar multiplication)
7. $c(\mathbf{u}+\mathbf{v})=$ \qquad (distributive property for vector addition)
8. $(c+d) \mathbf{u}=$ \qquad (distributive property for scalar addition)
9. $c(d \mathbf{u})=$ \qquad (associativity of scalar multiplication)
10. $1 \mathbf{u}=$ \qquad (multiplicative identity)

The elements of V are called \qquad . For now, we will assume that our scalar field is \mathbb{R}, i.e. our vector spaces will be "real" vector spaces.

Remark: Using only these axioms, we can show that the zero vector is unique and additive inverses are unique.

For each \mathbf{u} in V and scalar c,

$$
\begin{aligned}
0 \mathbf{u} & =\mathbf{0} \\
c \mathbf{0} & =\mathbf{0} \\
-\mathbf{u} & =(-1) \mathbf{u}
\end{aligned}
$$

Subpaces

Special subsets of vector spaces are vector spaces themselves.
Definition: A \qquad of a vector space V is a subset H of V that has three properties:

1. The zero vector of V \qquad .
2. H is closed under \qquad . That is, for each \mathbf{u} and \mathbf{v} in H, the sum \qquad is in H.
3. H is closed under \qquad . That is, for each \mathbf{u} in H and each scalar c, the vector \qquad is in H.

Remark: If the subset H satisfies these three properties, then H itself is a \qquad .

Subpaces Spanned by Sets

Recall: A linear combination refers to any sum of scalar multiples of vectors.
Example: Some linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are

Recall: $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ denotes the set of all vectors that can be written as linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.

Example: $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is the set of all vectors which can be written as \qquad
\qquad .

Theorem 4.1: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a \ldots of V.
$\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is called the \qquad spanned (or generated) by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.

Examples of Vector Spaces

Example. \mathbb{R}^{n} for $n \geq 1$ with component-wise addition and scalar multiplication is a vector space.
Example. For $n \geq 0$, let

$$
\mathbb{P}_{n}=\text { the set of all polynomials of degree at most } n
$$

Elements of \mathbb{P}_{n} have the form

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

where the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ and the variable t are real numbers.
\mathbb{P}_{n} with point-wise (like-term) addition and scalar multiplication is a vector space.

Examples of Subspaces

Example. $H=\left\{\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]: a, b \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.
Important Note: The vector space \mathbb{R}^{2} is not a subspace of \mathbb{R}^{3} because \mathbb{R}^{2} is not even a subset of \mathbb{R}^{3}. (Vectors in \mathbb{R}^{3} have three entries, and vectors in \mathbb{R}^{2} have only two entries, so we cannot relate the two spaces.)

