Learning Objectives

- Understand how row operations change the determinant of an $n \times n$ matrix
- Understand how the determinant of an $n \times n$ matrix is related to its invertibility

Properties of Determinants

Theorem 3.3: Determinants and Row Operations

Let A be a square matrix.

- (a) If a multiple of one row of A is added to another row to produce a matrix B, then det B =_____.
- (b) If two rows of A are interchanged to produce B, then det B =_____
- (c) If one row of A is multiplied by k to produce B, then $\det B =$ _____

		2	4	6	1
Example: U	Use row reduction to compute det	5	6	7	
		4	8	4	

Theorem 3.4: A square matrix A is invertible if and only if _____

Example: Compute det A and determine if the matrix $A = \begin{bmatrix} 1 & 3 & -2 & -2 \\ -1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 6 & 0 & -4 \end{bmatrix}$ is invertible.

Theorem 3.5: If A is an $n \times n$ matrix, then det $A^T =$ _____.

Remark: Theorem 3.5 says Theorem 3.3 holds if the word <u>row</u> is replaced with _____.

Theorem 3.6: If A and B are $n \times n$ matrices, then det AB =

Example: Let
$$A = \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix}$.

(a) Verify that $\det AB = \det A \det B$.

(b) Verify that $det(A + B) \neq det A + det B$.