Learning Objectives

- Understand how row operations change the determinant of an $n \times n$ matrix
- Understand how the determinant of an $n \times n$ matrix is related to its invertibility

Properties of Determinants

Theorem 3.3: Determinants and Row Operations
Let A be a square matrix.
(a) If a multiple of one row of A is added to another row to produce a matrix B, then $\operatorname{det} B=$ \qquad -.
(b) If two rows of A are interchanged to produce B, then $\operatorname{det} B=$ \qquad .
(c) If one row of A is multiplied by k to produce B, then $\operatorname{det} B=$ \qquad .

Example: Use row reduction to compute $\operatorname{det}\left[\begin{array}{lll}2 & 4 & 6 \\ 5 & 6 & 7 \\ 4 & 8 & 4\end{array}\right]$.

Theorem 3.4: A square matrix A is invertible if and only if \qquad .

Example: Compute $\operatorname{det} A$ and determine if the matrix $A=\left[\begin{array}{rrrr}1 & 3 & -2 & -2 \\ -1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 6 & 0 & -4\end{array}\right]$ is invertible.

Theorem 3.5: If A is an $n \times n$ matrix, then $\operatorname{det} A^{T}=$ \qquad .

Remark: Theorem 3.5 says Theorem 3.3 holds if the word row is replaced with \qquad .

Theorem 3.6: If A and B are $n \times n$ matrices, then $\operatorname{det} A B=$ \qquad

Example: Let $A=\left[\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 5 & 4\end{array}\right]$.
(a) Verify that $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
(b) Verify that $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$.

