Learning Objective

• Understand how to find the determinant of an $n \times n$ matrix

Introduction to Determinants

Notation: Let A be an $n \times n$ matrix. Then A_{ij} is the $(n-1) \times (n-1)$ submatrix formed by deleting the *i*th row and *j*th column of A.

Example: Find the submatrix A_{23} obtained from the following matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \end{bmatrix} \qquad A_{23} =$$

Definition: For $n \ge 2$, the ______ of an $n \times n$ matrix $A = [a_{ij}]$ is given by $\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$ =

Example: Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$.

Notation: Given $A = [a_{ij}]$, the ______ of A is the number C_{ij} given by

$$C_{ij} = (-1)^{i+j} \det A_{ij}$$

Using this new notation, we can rewrite the definition of the determinant as

 $\det A =$

which we call the _____ across the first row of A.

Theorem 3.1: The determinant of an $n \times n$ matrix $A = [a_{ij}]$ can be computed by a cofactor expansion ____

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

Remark: We can use a matrix of signs to determine $(-1)^{i+j}$

Example: Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ by using a cofactor expansion **down column 3**.

Example: Compute the determinant of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 5 \\ -1 & 0 & 2 & 1 \\ 0 & 0 & 3 & 0 \end{bmatrix}$.

(*Hint:* At each step, choose a row or column that involves the least amount of computation.)

Theorem 3.2: If <i>A</i> is a	$_$ matrix, then det A is the product of
the entries of the main diagonal of A .	

Example: Compute the determinant of $A =$		$\lceil 2 \rceil$	3	4	5	
	Compute the determinant of A	0	1	2	3	
	0	0	-3	5	•	
		0	0	0	4	