Learning Objective

- Understand how to find the determinant of an $n \times n$ matrix

Introduction to Determinants

Notation: Let A be an $n \times n$ matrix. Then $A_{i j}$ is the $(n-1) \times(n-1)$ submatrix formed by deleting the i th row and j th column of A.

Example: Find the submatrix A_{23} obtained from the following matrix.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array}\right] \quad A_{23}=
$$

Definition: For $n \geq 2$, the \qquad of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is given by

$$
\begin{aligned}
\operatorname{det} A & =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j} \\
& =
\end{aligned}
$$

Example: Compute the determinant of $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1\end{array}\right]$.

Notation: Given $A=\left[a_{i j}\right]$, the \qquad of A is the number $C_{i j}$ given by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

Using this new notation, we can rewrite the definition of the determinant as

$$
\operatorname{det} A=
$$

which we call the \qquad across the first row of A.

Theorem 3.1: The determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ can be computed by a cofactor expansion \qquad :

$$
\begin{aligned}
& \operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \\
& \operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
\end{aligned}
$$

Remark: We can use a matrix of signs to determine $(-1)^{i+j}$

$$
\left[\begin{array}{cccc}
+ & - & + & \cdots \\
- & + & - & \cdots \\
+ & - & + & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Example: Compute the determinant of $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1\end{array}\right]$ by using a cofactor expansion down column 3.

Example: Compute the determinant of $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 5 \\ -1 & 0 & 2 & 1 \\ 0 & 0 & 3 & 0\end{array}\right]$.
(Hint: At each step, choose a row or column that involves the least amount of computation.)

Theorem 3.2: If A is a \qquad matrix, then $\operatorname{det} A$ is the product of the entries of the main diagonal of A.

Example: Compute the determinant of $A=\left[\begin{array}{rrrr}2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -3 & 5 \\ 0 & 0 & 0 & 4\end{array}\right]$.

