Definition: Assume that A is an $m \times n$ matrix that can be row reduced to echelon form without row interchanges. Then A can be written in the form
where L is an $m \times m$ lower triangular matrix with 1 's on the diagonal and U is an $m \times n$ (upper triangular) echelon form of A.

Such a factorization is called an \qquad of A.

Why are $L U$ factorizations useful?

$L U$ factorizations improve the computational efficiency of solving matrix equations.
If $A=L U$, then the matrix equation $A \mathbf{x}=\mathbf{b}$ can be rewritten as

$$
L(U \mathbf{x})=\mathbf{b}
$$

To solve $A \mathbf{x}=\mathbf{b}$, we can solve the pair of equations:
2. Let $A=\left[\begin{array}{lll}3 & 0 & 1 \\ 3 & 1 & 1 \\ 3 & 2 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=L U$.

Use this $L U$ factorization to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
Step 1: Solve $L \mathbf{y}=\mathbf{b}$.

Step 2: Solve $U \mathbf{x}=\mathbf{y}$.

Conclusion:

