Learning Objectives

- Use the Invertible Matrix Theorem to connect properties of square matrices
- Determine whether a linear transformation is invertible

Characterizations of Invertible Matrices

Remarks:

- 1. The Invertible Matrix Theorem only applies to ______ matrices.
- 2. The Invertible Matrix Theorem divides the set of all ______ matrices into two disjoint classes. Therefore, it also characterizes ______ (or singular) matrices.

Example: Use the Invertible Matrix Theorem to determine if the following matrices are invertible. (You should not have to do any row operations.) Be sure you can justify your answers.

a.
$$\begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix}$$
b. $\begin{bmatrix} -2 & 3 & 1 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & -9 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ c. $\begin{bmatrix} 2 & 1 & 8 & 2 & 0 \\ -2 & -1 & -1 & 5 & 0 \\ 1 & 3 & -3 & 3 & 0 \\ 0 & 7 & -10 & 3 & 0 \\ 5 & 5 & -3 & -1 & 0 \end{bmatrix}$

Example: Suppose A is a 5×5 matrix, and suppose there is a vector **v** in \mathbb{R}^5 which is not a linear combination of the columns of A. What can you say about the number of solutions to $A\mathbf{x} = \mathbf{0}$?

Invertible Linear Transformations

If A is an invertible $n \times n$ matrix, then for all **x** in \mathbb{R}^n , we have

 $A^{-1}A\mathbf{x} =$ and $AA^{-1}\mathbf{x} =$

Definition: A linear there exists a function	transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is said to be if $S : \mathbb{R}^n \to \mathbb{R}^n$ such that
	for all \mathbf{x} in \mathbb{R}^n
	for all \mathbf{x} in \mathbb{R}^n
We call S the	of T and write it as

Theorem 2.9: Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is ______ if and only if A is an ______ matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = _$ ______ is the unique function satisfying the equations $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .

Example: Prove the following statement or provide a counterexample: $T : \mathbb{R}^n \to \mathbb{R}^n$ is a one-toone linear transformation if and only if $T : \mathbb{R}^n \to \mathbb{R}^n$ is an onto linear transformation.