Learning Objectives

- Use the Invertible Matrix Theorem to connect properties of square matrices
- Determine whether a linear transformation is invertible

Characterizations of Invertible Matrices

Theorem 2.8: The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
(a) A is an \qquad matrix.
(b) A is row equivalent to the \qquad matrix.
(c) A has \qquad pivot positions.
(d) The equation $A \mathbf{x}=\mathbf{0}$ has \qquad solution.
(e) The columns of A form a linearly \qquad set.
(f) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is \qquad .
(g) The equation $A \mathbf{x}=\mathbf{b}$ has \qquad solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A \qquad \mathbb{R}^{n}.
(i) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \qquad .
(j) There is an $n \times n$ matrix C such that \qquad .
(k) There is an $n \times n$ matrix D such that \qquad .
(1) \qquad is an invertible matrix.

Remarks:

1. The Invertible Matrix Theorem only applies to \qquad matrices.
2. The Invertible Matrix Theorem divides the set of all \qquad matrices into two disjoint classes. Therefore, it also characterizes \qquad (or singular) matrices.

Example: Use the Invertible Matrix Theorem to determine if the following matrices are invertible. (You should not have to do any row operations.) Be sure you can justify your answers.
a. $\left[\begin{array}{lll}2 & 3 & 4 \\ 2 & 3 & 4 \\ 2 & 3 & 4\end{array}\right]$
b. $\left[\begin{array}{rrrr}-2 & 3 & 1 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & -9 & 8 \\ 0 & 0 & 0 & 1\end{array}\right]$
c. $\left[\begin{array}{rrrrr}2 & 1 & 8 & 2 & 0 \\ -2 & -1 & -1 & 5 & 0 \\ 1 & 3 & -3 & 3 & 0 \\ 0 & 7 & -10 & 3 & 0 \\ 5 & 5 & -3 & -1 & 0\end{array}\right]$

Example: Suppose A is a 5×5 matrix, and suppose there is a vector \mathbf{v} in \mathbb{R}^{5} which is not a linear combination of the columns of A. What can you say about the number of solutions to $A \mathbf{x}=\mathbf{0}$?

Invertible Linear Transformations

If A is an invertible $n \times n$ matrix, then for all \mathbf{x} in \mathbb{R}^{n}, we have

$$
A^{-1} A \mathbf{x}=\quad \text { and } \quad A A^{-1} \mathbf{x}=
$$

Definition: A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be \qquad if there exists a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

	for all \mathbf{x} in \mathbb{R}^{n}
	for all \mathbf{x} in \mathbb{R}^{n}

We call S the \qquad of T and write it as \qquad .

Theorem 2.9: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then T is \qquad if and only if A is an \qquad matrix. In that case, the linear transformation S given by $S(\mathbf{x})=$ \qquad is the unique function satisfying the equations $S(T(\mathbf{x}))=\mathbf{x}$ and $T(S(\mathbf{x}))=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.

Example: Prove the following statement or provide a counterexample: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-toone linear transformation if and only if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an onto linear transformation.

