Learning Objectives

- Understand what it means for a matrix to be invertible
- Determine whether a 2×2 matrix is invertible
- Understand how to find the inverse of a matrix

The Inverse of a Matrix

The multiplicative inverse of a real number a is denoted by a^{-1}. For example, $7^{-1}=\frac{1}{7}$ and

$$
7 \cdot 7^{-1}=7^{-1} \cdot 7=1
$$

Definition: An $n \times n$ matrix A is said to be \qquad if there exists an $n \times n$ matrix C such that
\qquad and \qquad
where $I=I_{n}$ is the $n \times n$ identity matrix. We call C the \qquad of A.

FACT: If A is invertible, then the inverse of A is unique.

Notation: The unique inverse of A is usually denoted by A^{-1}, so that
\qquad

$$
=I \quad \text { and }
$$

\qquad $=I$

WARNING: Not all $n \times n$ matrices are invertible. Matrices that are not invertible are sometimes called singular, and invertible matrices are called nonsingular.

Theorem 2.4: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=
$$

If $a d-b c=0$, then A is \qquad .

The quantity $a d-b c$ is called the \qquad of A, and we write

$$
\operatorname{det} A=
$$

Theorem 2.4 says that a 2×2 matrix A is invertible if and only if \qquad $\neq 0$.

Theorem 2.5: If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution \qquad _.

Proof of Theorem 2.5: Suppose A is an invertible $n \times n$ matrix, and let \mathbf{b} be any vector in \mathbb{R}^{n}. Then the vector \qquad is a solution to the equation $A \mathbf{x}=\mathbf{b}$ since

$$
A \mathrm{x}=
$$

We can prove that this is the unique solution since if \mathbf{u} is another solution to $A \mathbf{x}=\mathbf{b}$, we can left multiply both sides by \qquad and get
\qquad , \qquad and

Example: Show that the matrix $A=\left[\begin{array}{rr}-7 & 3 \\ 5 & -2\end{array}\right]$ is invertible. Then use the inverse of A to solve the system of linear equations

$$
\begin{array}{r}
-7 x_{1}+3 x_{2}=2 \\
5 x_{1}-2 x_{2}=1
\end{array}
$$

Theorem 2.6:

a. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=
$$

b. If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is

$$
(A B)^{-1}=
$$

c. If A is an invertible matrix, then so is A^{T} and

$$
\left(A^{T}\right)^{-1}=
$$

\qquad

Proof of Theorem 2.6.b: Suppose A and B are $n \times n$ invertible matrices. Then
$(A B)\left(B^{-1} A^{-1}\right)=$

Similarly, $\left(B^{-1} A^{-1}\right)(A B)=$

Remark: Theorem 2.6.b can be generalized to three or more invertible matrices. If A, B, and C are $n \times n$ invertible matrices, then

$$
(A B C)^{-1}=
$$

In general, the product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the \qquad order.

Invertible $n \times n$ Matrices

We have a method for finding the inverse of a 2×2 invertible matrix. How do we find the inverse of an $n \times n$ invertible matrix for $n>2$?

Theorem 2.7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to \qquad , and in this case, any sequence of elementary row operations that reduces A to \qquad also transforms \qquad into A^{-1}.

An Algorithm for Finding A^{-1}

Algorithm for Finding A^{-1}

Row reduce the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. If A is row equivalent to I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $[\quad$. Otherwise A does not have an inverse.

Example: Use the algorithm above to find the inverse of $A=\left[\begin{array}{rrr}2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, if it exists.

