Learning Objectives

- Use matrix algebra to solve equations involving matrices
- Understand how to find the transpose of a matrix

Matrix Operations

Two ways to denote an $m \times n$ matrix A:

- 1. In terms of the *columns* of A: $A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{bmatrix}$
- 2. In terms of the *entries* of A:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$$

The main diagonal entries of A are _____.

Theorem 2.1: Let A, B, and C be matrices of the same size, and let r and s be scalars.Thena. A + B =_____b. (A + B) + C =_____e. (r + s)A =_____

f. r(sA) = _____

c. A + 0 =_____

Matrix Multiplication

Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, \ldots, \mathbf{b}_p$, then the product AB is the ______ matrix whose columns are $A\mathbf{b}_1, \ldots, A\mathbf{b}_p$. That is,

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} =$$

Example: Compute
$$AB$$
 where $A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix}$.
 $A\mathbf{b}_1 = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \qquad \qquad A\mathbf{b}_2 = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -7 \end{bmatrix} =$

So, AB =

Remark: Each column of AB is a ______ of the columns of A using weights from the corresponding columns of B.

The number of ______ in *B* in order for a linear combination such as $A\mathbf{b}_1$ to be defined. Thus, if *A* is an $m \times n$ matrix and *B* is a $n \times p$ matrix, *AB* is a ______ matrix.

Example: If A is a 4×3 matrix and B is a 3×2 matrix, what are the sizes of AB and BA, if they are defined?

The Row-Column Rule for Computing AB

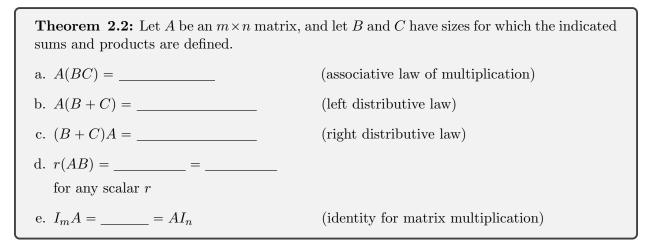
If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of the corresponding entries from ______ of A and ______ of B. If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

Example: Use the row-column rule to compute the following products:

a.
$$\begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix} =$$

b.
$$\begin{bmatrix} 1 & 0 & -5 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 3 & -4 & 1 \\ -1 & 0 & -2 \end{bmatrix} =$$



WARNINGS:

The properties above are analogous to properties of multiplication of real numbers. But, NOT ALL real number properties correspond to matrix properties.

- 1. In general, $AB \neq _$. (See Example 7 on page 100.)
- 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is ______ in general that B = C. (See Exercise 10 on page 102.)
- 3. If a product *AB* is the zero matrix, you *cannot* conclude in general that either ______ or _____. (See Exercise 12 on page 103.)

Powers of a Matrix

If A is an $n \times n$ matrix and k is a positive integer, then A^k denotes the product of k copies of A:

$$A^k = \underbrace{A \cdots A}_k$$

Example:

$$\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}^3 = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} & & \\ & & \\ \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} & & \\ & & \\ \end{bmatrix}$$

The Transpose of a Matrix

Definition: If A is an $m \times n$ matrix, the _____ of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Example: If $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 & 6 \end{bmatrix}$, then $A^T =$

Example: Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}$. Compute AB , $(AB)^T$, A^TB^T , and B^TA^T .

Theorem 2.3: Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- a. $(A^T)^T =$ _____
- b. $(A + B)^T =$ _____ c. For any scalar r, $(rA)^T =$ _____
- d. $(AB)^T =$ _____