Learning Objectives

- Use matrix algebra to solve equations involving matrices
- Understand how to find the transpose of a matrix

Matrix Operations

Two ways to denote an $m \times n$ matrix A :

1. In terms of the columns of A :

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

2. In terms of the entries of A :

$$
A=\left[\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]=\left[a_{i j}\right]
$$

The main diagonal entries of A are \qquad .

Theorem 2.1: Let A, B, and C be matrices of the same size, and let r and s be scalars. Then
a. $A+B=$ \qquad d. $r(A+B)=$ \qquad
b. $(A+B)+C=$ \qquad
e. $(r+s) A=$ \qquad
c. $A+0=$ \qquad f. $r(s A)=$ \qquad

Matrix Multiplication

Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$, then the product $A B$ is the \qquad matrix whose columns are $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$. That is,

$$
A B=A\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right]=
$$

Example: Compute $A B$ where $A=\left[\begin{array}{rr}4 & -2 \\ 3 & -5 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -3 \\ 6 & -7\end{array}\right]$.
$A \mathbf{b}_{1}=\left[\begin{array}{rr}4 & -2 \\ 3 & -5 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 6\end{array}\right]=$

$$
A \mathbf{b}_{2}=\left[\begin{array}{rr}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
-3 \\
-7
\end{array}\right]=
$$

So, $A B=$

Remark: Each column of $A B$ is a \qquad of the columns of A using weights from the corresponding columns of B.

The number of \qquad of A must match the number of \qquad in B in order for a linear combination such as $A \mathbf{b}_{1}$ to be defined. Thus, if A is an $m \times n$ matrix and B is a $n \times p$ matrix, $A B$ is a \qquad matrix.

Example: If A is a 4×3 matrix and B is a 3×2 matrix, what are the sizes of $A B$ and $B A$, if they are defined?
$A B=\left[\begin{array}{lll}* & * & * \\ * & * & * \\ * & * & * \\ * & * & *\end{array}\right]\left[\begin{array}{ll}* & * \\ * & * \\ * & *\end{array}\right]=$
$B A$ would be $\left[\begin{array}{ll}* & * \\ * & * \\ * & *\end{array}\right]\left[\begin{array}{lll}* & * & * \\ * & * & * \\ * & * & * \\ * & * & *\end{array}\right]$, which is \qquad .

The Row-Column Rule for Computing $A B$

If the product $A B$ is defined, then the entry in row i and column j of $A B$ is the sum of the products of the corresponding entries from \qquad of A and \qquad of B. If $(A B)_{i j}$ denotes the (i, j)-entry in $A B$, and if A is an $m \times n$ matrix, then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

Example: Use the row-column rule to compute the following products:
a. $\left[\begin{array}{rr}4 & -2 \\ 3 & -5 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & -3 \\ 6 & -7\end{array}\right]=$
b. $\left[\begin{array}{rrr}1 & 0 & -5 \\ 3 & -1 & 2\end{array}\right]\left[\begin{array}{rrr}2 & 1 & 0 \\ 3 & -4 & 1 \\ -1 & 0 & -2\end{array}\right]=$

Theorem 2.2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=$ \qquad (associative law of multiplication)
b. $A(B+C)=$ \qquad (left distributive law)
c. $(B+C) A=$ \qquad (right distributive law)
d. $r(A B)=$ \qquad $=$
for any scalar r
e. $I_{m} A=$ \qquad $=A I_{n}$ (identity for matrix multiplication)

WARNINGS:

The properties above are analogous to properties of multiplication of real numbers. But, NOT ALL real number properties correspond to matrix properties.

1. In general, $A B \neq$ \qquad . (See Example 7 on page 100.)
2. The cancellation laws do not hold for matrix multiplication. That is, if $A B=A C$, then it is \qquad in general that $B=C$. (See Exercise 10 on page 102.)
3. If a product $A B$ is the zero matrix, you cannot conclude in general that either
\qquad or \qquad . (See Exercise 12 on page 103.)

Powers of a Matrix

If A is an $n \times n$ matrix and k is a positive integer, then A^{k} denotes the product of k copies of A :

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Example:

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]^{3} } & =\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right] \\
& =[
\end{aligned}
$$

The Transpose of a Matrix

Definition: If A is an $m \times n$ matrix, the \qquad of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

Example: If $A=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 & 6\end{array}\right]$, then $A^{T}=$

Example: Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -2 & 4\end{array}\right]$. Compute $A B,(A B)^{T}, A^{T} B^{T}$, and $B^{T} A^{T}$.

Theorem 2.3: Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=$ \qquad
b. $(A+B)^{T}=$
c. For any scalar $r,(r A)^{T}=$ \qquad
d. $(A B)^{T}=$ \qquad

