Learning Objectives

- Understand how to find the standard matrix of a linear transformation
- Determine whether a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one
- Determine whether a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}

The Matrix of a Linear Transformation

Example: Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{y}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation that maps \mathbf{e}_{1} to \mathbf{y}_{1} and \mathbf{e}_{2} to \mathbf{y}_{2}. Find the images of $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ under T.

Solution: Observe that any vector \mathbf{x} in \mathbb{R}^{2} can be written as

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\longleftarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\ldots\left[\begin{array}{l}
0 \\
1
\end{array}\right]=工 \mathbf{e}_{1}+\ldots \mathbf{e}_{2}
$$

Then since T is a linear transformation,

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}\right) \\
& =T\left(x_{1} \mathbf{e}_{1}\right)+T\left(x_{2} \mathbf{e}_{2}\right) \\
& =\ldots T\left(\mathbf{e}_{1}\right)+\ldots T\left(\mathbf{e}_{2}\right) \\
& =\ldots \mathbf{y}_{1}+\ldots \mathbf{y}_{2} \\
& =[\square
\end{aligned}
$$

Therefore, $T\left(\left[\begin{array}{l}3 \\ 2\end{array}\right]\right)=$

The previous example illustrates that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by what it does to the \qquad of the $n \times n$ identity matrix I_{n}.

Theorem 1.10: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that

$$
T(\mathbf{x})=\quad \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n}
$$

In fact, A is the $m \times n$ matrix whose j th column is the vector \qquad , where \mathbf{e}_{j} is the j th column of the identity matrix in \mathbb{R}^{n} :

$$
A=[\square]
$$

Definition: The matrix A above is called the \qquad matrix for the linear transformation T.

Example: Find the standard matrix A for the projection of \mathbb{R}^{3} onto the $x_{1} x_{2}$-plane $T(\mathbf{x})=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right]$.

Example: Find the standard matrix A for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates the plane about the origin through an angle of $\frac{\pi}{4}$ radians counterclockwise. Hint: Determine how T transforms \mathbf{e}_{1} and \mathbf{e}_{2}. Knowledge of the unit circle could help.

Existence and Uniqueness Questions

Definition: A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of \qquad \mathbf{x} in \mathbb{R}^{n}.

Equivalently, T is onto \mathbb{R}^{m} when the range of T is all of the codomain \mathbb{R}^{m}. That is, T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if for each \mathbf{b} in the codomain \mathbb{R}^{m} there exists at least one solution of \qquad . Therefore, the question: "Does T map \mathbb{R}^{n} onto \mathbb{R}^{m} ?" is an \qquad question.

Definition: A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of \qquad \mathbf{x} in \mathbb{R}^{n}.

Equivalently, T is one-to-one if, for each \mathbf{b} in \mathbb{R}^{m}, the equation $T(\mathbf{x})=\mathbf{b}$ has either a \qquad
solution or \qquad . Therefore, the question: "Is T one-to-one?" is a \qquad question.

Theorem 1.11: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x})=\mathbf{0}$ has \qquad _.

Theorem 1.12: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then:
a. T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of A \qquad .
b. T is one-to-one if and only if the columns of A \qquad -

Example: Let T be the linear transformation whose standard matrix is
$A=\left[\begin{array}{rrr}1 & 0 & 3 \\ -4 & -3 & 0 \\ 5 & 4 & 6 \\ 0 & -1 & 4\end{array}\right]$
Does $T \operatorname{map} \mathbb{R}^{3}$ onto \mathbb{R}^{4} ? Is T a one-to-one mapping?

Example: Let $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2}-x_{3}, 6 x_{1}+7 x_{2}+x_{3}\right)$.
a. Find the standard matrix of T.
b. Is T a one-to-one mapping?
c. Does T map \mathbb{R}^{3} onto \mathbb{R}^{2} ?

