Learning Objectives

- Understand how to find the standard matrix of a linear transformation
- Determine whether a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one
- Determine whether a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m

The Matrix of a Linear Transformation

Example: Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Suppose $T : \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation that maps \mathbf{e}_1 to \mathbf{y}_1 and \mathbf{e}_2 to \mathbf{y}_2 . Find the images of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ under T.

Solution: Observe that any vector \mathbf{x} in \mathbb{R}^2 can be written as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underline{\qquad} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \underline{\qquad} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \underline{\qquad} \mathbf{e}_1 + \underline{\qquad} \mathbf{e}_2$$

Then since T is a **linear** transformation,

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + x_2\mathbf{e}_2)$$
$$= T(x_1\mathbf{e}_1) + T(x_2\mathbf{e}_2)$$
$$= \underline{\qquad} T(\mathbf{e}_1) + \underline{\qquad} T(\mathbf{e}_2)$$
$$= \underline{\qquad} \mathbf{y}_1 + \underline{\qquad} \mathbf{y}_2$$
$$= \begin{bmatrix} \\ \\ \end{bmatrix}$$

Therefore, $T\left(\begin{bmatrix} 3\\2 \end{bmatrix} \right) =$

The previous example illustrates that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by what it does to the ______ of the $n \times n$ identity matrix I_n .

Definition: The matrix A above is called the _____ **matrix for the linear** transformation T.

Example: Find the standard matrix A for the projection of \mathbb{R}^3 onto the x_1x_2 -plane $T(\mathbf{x}) = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$.

Example: Find the standard matrix A for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that rotates the plane about the origin through an angle of $\frac{\pi}{4}$ radians counterclockwise. *Hint:* Determine how T transforms \mathbf{e}_1 and \mathbf{e}_2 . Knowledge of the unit circle could help.

Existence and Uniqueness Questions

Definition: A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be <u>onto</u> \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of ______ **x** in \mathbb{R}^n .

Equivalently, T is **onto** \mathbb{R}^m when the range of T is all of the codomain \mathbb{R}^m . That is, T maps \mathbb{R}^n **onto** \mathbb{R}^m if for each **b** in the codomain \mathbb{R}^m there exists at least one solution of ______. Therefore, the question: "Does T map \mathbb{R}^n **onto** \mathbb{R}^m ?" is an ______ question.

Definition: A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be <u>one-to-one</u> \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of ______ **x** in \mathbb{R}^n .

Theorem 1.11: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has ______.

Theorem 1.12: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A _____

b. T is one-to-one if and only if the columns of A _____

Example: Let T be the linear transformation whose standard matrix is

A =	1	0	3
	-4	-3	0
	5	4	6
	0	-1	4

Does T map \mathbb{R}^3 onto \mathbb{R}^4 ? Is T a one-to-one mapping?

Example: Let $T(x_1, x_2, x_3) = (3x_1 + x_2 - x_3, 6x_1 + 7x_2 + x_3).$

a. Find the standard matrix of T.

b. Is T a one-to-one mapping?

c. Does $T \mod \mathbb{R}^3$ onto \mathbb{R}^2 ?