Learning Objectives

- Determine whether a specified vector is in the range of a matrix transformation
- Determine whether a transformation is linear

Introduction to Linear Transformations

It turns out that a matrix equation $A \mathbf{x}=\mathbf{b}$ can arise in linear algebra (and in its applications) in a way that is not directly connected with linear combinations of vectors.

We can think of the matrix A as an object that "acts" on a vector \mathbf{x} by multiplication to produce a new vector called $A \mathbf{x}$.

Example: $\left[\begin{array}{ll}2 & -4 \\ 3 & -6 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{r}-8 \\ -12 \\ -4\end{array}\right] \quad\left[\begin{array}{ll}2 & -4 \\ 3 & -6 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=[\quad]$

If A is an $m \times n$ matrix, then solving $A \mathbf{x}=\mathbf{b}$ amounts to finding all \qquad in \mathbb{R}^{n} which are transformed into the vector \mathbf{b} in \qquad under the "action" of multiplication by A.

Definition: A \qquad (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

The set \mathbb{R}^{n} is called the \qquad of T and \mathbb{R}^{m} is called the \qquad of T.

For \mathbf{x} in \mathbb{R}^{n}, the vector $T(\mathbf{x})$ in \mathbb{R}^{m} is called the
\qquad of \mathbf{x}.

The set of all images $T(\mathbf{x})$ is called the
\qquad of T.

Matrix Transformations

Example: Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$. Define a transformation $T: _\longrightarrow \quad$ by $T(\mathbf{x})=A \mathbf{x}$.
Describe the image of $\mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ under the transformation T.
$T(\mathbf{u})=A \mathbf{u}=$

Example: Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -5 & 10 & -15\end{array}\right], \mathbf{b}=\left[\begin{array}{r}2 \\ -10\end{array}\right]$, and $\mathbf{c}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.
Define a transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. Find an \mathbf{x} in \mathbb{R}^{3} whose image under T is \mathbf{b}.
b. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ? (uniqueness problem)
c. Determine if \mathbf{c} is in the range of the transformation T. (existence problem)

Linear Transformations

Definition: A transformation T is \qquad if
(i) $T(\mathbf{u}+\mathbf{v})=$ \qquad for all \mathbf{u}, \mathbf{v} in the domain of T;
(ii) $T(c \mathbf{u})=$ \qquad for all scalars c and all \mathbf{u} in the domain of T.

Recall Theorem 1.5 says that if A is an $m \times n$ matrix, then the transformation $T(\mathbf{x})=A \mathbf{x}$ has the properties

$$
A(\mathbf{u}+\mathbf{v})=
$$

\qquad and $\quad A(c \mathbf{u})=$ \qquad
for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} and all scalars c.
Thus, we have the following important fact:
Every \qquad transformation is a \qquad transformation.

The definition of a linear transformation implies the following properties:
If T is a linear transformation, then

$$
T(\mathbf{0})=
$$

\qquad
and

$$
T(c \mathbf{u}+d \mathbf{v})=
$$

for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d.

Note that if a transformation satisfies the second property above, then it must be linear.
Repeated application of this property gives us a useful generalization, referred to as the superposition principle:

$$
T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}\right)=
$$

\qquad

Example: Define a transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right]$.
Show that T is a linear transformation.

Example: Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(\mathbf{x})=\left[\begin{array}{c}\left|x_{1}+x_{3}\right| \\ 2+5 x_{2}\end{array}\right]$. Show that T is not a linear transformation.

