Learning Objectives

- Determine whether a specified vector is in the range of a matrix transformation
- Determine whether a transformation is linear

Introduction to Linear Transformations

It turns out that a matrix equation $A\mathbf{x} = \mathbf{b}$ can arise in linear algebra (and in its applications) in a way that is not directly connected with linear combinations of vectors.

We can think of the matrix A as an object that "acts" on a vector \mathbf{x} by multiplication to produce a new vector called $A\mathbf{x}$.

Example:	$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -8 \\ -12 \\ -4 \end{bmatrix}$	$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$
----------	---	--

If A is an $m \times n$ matrix, then solving $A\mathbf{x} = \mathbf{b}$ amounts to finding all ______ in \mathbb{R}^n which are transformed into the vector \mathbf{b} in ______ under the "action" of multiplication by A.

Definition: A ______ (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the ______ of T and \mathbb{R}^m is called the ______ of T.

For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the ______ of \mathbf{x} .

The set of all images $T(\mathbf{x})$ is called the ______ of T.

Matrix Transformations

Example: Let $A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

Define a transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.

a. Find an \mathbf{x} in \mathbb{R}^3 whose image under T is \mathbf{b} .

b. Is there more than one \mathbf{x} whose image under T is b? (uniqueness problem)

c. Determine if \mathbf{c} is in the range of the transformation T. (existence problem)

Linear Transformations

Definition: A transformation T is ______ if (i) $T(\mathbf{u} + \mathbf{v}) =$ ______ for all \mathbf{u}, \mathbf{v} in the domain of T; (ii) $T(c\mathbf{u}) =$ ______ for all scalars c and all \mathbf{u} in the domain of T.

Recall Theorem 1.5 says that if A is an $m \times n$ matrix, then the transformation $T(\mathbf{x}) = A\mathbf{x}$ has the properties

 $A(\mathbf{u} + \mathbf{v}) =$ and $A(c\mathbf{u}) =$

for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and all scalars c.

Thus, we have the following important fact:

Every ______ transformation is a ______ transformation.

The definition of a linear transformation implies the following properties:

If T is a linear transformation, then	
T(0) =	
and	
$T(c\mathbf{u} + d\mathbf{v}) = \underline{\qquad} + \underline{\qquad}$	
for all vectors \mathbf{u}, \mathbf{v} in the domain of T and all scalars c, d .	

Note that if a transformation satisfies the second property above, then it must be linear.

Repeated application of this property gives us a useful generalization, referred to as the **superposition principle**:

 $T(c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p) = _$

Example: Define a transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$. Show that T is a linear transformation.

Example: Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(\mathbf{x}) = \begin{bmatrix} |x_1 + x_3| \\ 2 + 5x_2 \end{bmatrix}$. Show that T is **not** a linear transformation.