Learning Objectives

- Determine whether a set of vectors is linearly independent
- Determine whether the columns of an $m \times n$ matrix are linearly independent

Linear independence

Definition: A set of vectors $S = {\mathbf{v}_1, \dots, \mathbf{v}_t}$ is _______ if, whenever $c_1 \mathbf{v}_1 + \dots + c_t \mathbf{v}_t = \mathbf{0}$, we have $c_1 = \dots = c_t = 0$.

A set of vectors is $S = {\mathbf{v}_1, \dots, \mathbf{v}_t}$ is linearly dependent if there exist $c_1, \dots, c_t \in \mathbb{R}$ with some $c_i \neq 0$, such that ______

Example: Since
$$4 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} - 6 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} -2 \\ 5 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, we conclude that the set
$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 5 \\ -2 \end{bmatrix} \right\}$$

is linearly _____

Remark: A set $S = {\mathbf{v}}$ with one vector is linearly dependent if and only if \mathbf{v} is ______. A set $S = {\mathbf{v}, \mathbf{w}}$ with two vectors is linearly dependent if and only if one of the vectors is a _______ of the other.

Example: Do the vectors $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ for a linearly independent set?

Linear independence and matrices

Theorem For a matrix $A = \begin{bmatrix} \mathbf{v_1} & \cdots & \mathbf{v_t} \end{bmatrix}$, the columns of A form a linearly independent set if and only if the homogeneous system $A\mathbf{x} = \mathbf{0}$ has a ______ solution.

Example: Consider the vectors

$$\begin{bmatrix} 0\\1\\0\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\4\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\2\\-1\\-1 \\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1\\-1\\1 \end{bmatrix} \in \mathbb{R}^5.$$

To test whether they form a linearly independent set, we put them into a matrix

$$\begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 1 \\ 2 & 4 & -1 & -1 \\ 3 & 5 & -1 & 1 \end{bmatrix}$$

and row reduce to echelon form

1	0	0	2
0	1	0	-1
0	0	2	2
0	0	0	1
0	0	0	0

Since there are no free variables, we conclude that _____

Theorem Any set $\{\succeq_{\mathcal{W}}, \ldots, \succeq_{\approx}\} \subseteq \mathbb{R}^n$ with $t _ n$ is linearly dependent.

Linear independence geometrically

Theorem A set of (at least two) vectors is linearly dependent if and only if one of the vectors is the set is a ______ of the rest.

Theorem A set $S = {\mathbf{v}_1, \dots, \mathbf{v}_t} \in \mathbb{R}^n$ is linearly independent if and only if

- $\mathbf{v_1} \neq \mathbf{0}$, and
- $\mathbf{v_2} \notin \operatorname{Span}\{\mathbf{v_1}\}$, and

• $\mathbf{v_t} \neq \operatorname{Span}\{\mathbf{v_1}, \dots, \mathbf{v_{t-1}}\}.$

÷