Learning Objectives

- Determine whether a set of vectors is linearly independent
- Determine whether the columns of an $m \times n$ matrix are linearly independent

Linear independence

Definition: A set of vectors $S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is \qquad if, whenever $c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{t} \mathbf{v}_{\mathbf{t}}=\mathbf{0}$, we have $c_{1}=\cdots=c_{t}=0$.

A set of vectors is $S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\}$ is linearly dependent if there exist $c_{1}, \ldots, c_{t} \in \mathbb{R}$ with some $c_{i} \neq 0$, such that \qquad

Example: Since $4\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]-6\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+2\left[\begin{array}{c}-2 \\ 5 \\ -2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, we conclude that the set

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
5 \\
-2
\end{array}\right]\right\}
$$

is linearly \qquad .

Remark: A set $S=\{\mathbf{v}\}$ with one vector is linearly dependent if and only if \mathbf{v} is
\qquad -.

A set $S=\{\mathbf{v}, \mathbf{w}\}$ with two vectors is linearly dependent if and only if one of the vectors is a \qquad of the other.

Example: Do the vectors $\mathbf{v}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ for a linearly independent set?

Linear independence and matrices

Theorem For a matrix $A=\left[\begin{array}{lll}\mathbf{v}_{\mathbf{1}} & \cdots & \mathbf{v}_{\mathbf{t}}\end{array}\right]$, the columns of A form a linearly independent set if and only if the homogeneous system $A \mathbf{x}=\mathbf{0}$ has a \qquad solution.

Example: Consider the vectors

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
2 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1 \\
-1 \\
1
\end{array}\right] \in \mathbb{R}^{5} .
$$

To test whether they form a linearly independent set, we put them into a matrix

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & -1 \\
1 & 0 & 0 & 2 \\
0 & 1 & 2 & 1 \\
2 & 4 & -1 & -1 \\
3 & 5 & -1 & 1
\end{array}\right]
$$

and row reduce to echelon form

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Since there are no free variables, we conclude that \qquad .

Theorem Any set $\left\{\succsim_{\approx}, \ldots, \succsim \approx\right\} \subseteq \mathbb{R}^{n}$ with t \qquad n is linearly dependent.

Linear independence geometrically

Theorem A set of (at least two) vectors is linearly dependent if and only if one of the vectors is the set is a \qquad of the rest.

Theorem A set $S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}}\right\} \in \mathbb{R}^{n}$ is linearly independent if and only if

- $\mathbf{v}_{\mathbf{1}} \neq \mathbf{0}$, and
- $\mathbf{v}_{\mathbf{2}} \notin \operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}\right\}$, and
- $\mathbf{v}_{\mathbf{t}} \neq \operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{t}-\mathbf{1}}\right\}$.

