Learning Objectives

- Determine when a homogeneous system has a nontrivial solution
- Understand how to write a general solution in parametric vector form
- Understand how to write the equation of a line or plane in parametric vector form
- Understand how the solution set of $A\mathbf{x} = \mathbf{b}$ relates to the solution set of $A\mathbf{x} = \mathbf{0}$

Homogeneous Linear Systems

Definition: A system of linear equations is said to be ______ if it can be written in the form $A\mathbf{x} = \mathbf{0}$, where A is an $m \times n$ matrix and **0** is the zero vector in \mathbb{R}^m .

Example: Write the following homogeneous system as a matrix equation.

 $x_1 + 10x_2 = 0$ $2x_1 + 20x_2 = 0$

Without solving the system, decide whether the system has a solution in \mathbb{R}^2 . That is, does there exist a vector \mathbf{x} in \mathbb{R}^2 that satisfies the homogenous matrix equation?

Remark: A homogeneous system $A\mathbf{x} = \mathbf{0}$ *always* has at least one solution, namely, $\mathbf{x} = \mathbf{0}$ (the zero vector in \mathbb{R}^n). This zero solution is usually called the _____ solution.

For a given equation $A\mathbf{x} = \mathbf{0}$, the important question is whether there exists a **solution**, that is, a nonzero vector \mathbf{x} that satisfies $A\mathbf{x} = \mathbf{0}$.

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one _____.

Example: Solve the homogeneous system:

$$3x_1 + 6x_2 = 0$$
$$2x_1 + 4x_2 = 0$$

$$\begin{bmatrix} 3 & 6 & 0 \\ 2 & 4 & 0 \end{bmatrix} \xrightarrow{\frac{1}{3}R_1} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution set: $\begin{cases} x_1 = \\ x_2 \end{bmatrix}$

We can also write our solution as a vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} & \\ & \end{bmatrix}$$

This is called the **parametric vector form** of the solution. We can also graph our solution set:

Solutions of Nonhomogeneous Systems

Example: Solve the non-homogeneous system:

$$3x_1 + 6x_2 = 9$$
$$2x_1 + 4x_2 = 6$$

Notice that the coefficient matrix of this system is the same as the one in the example above.

_

$$\begin{bmatrix} 3 & 6 & 9 \\ 2 & 4 & 6 \end{bmatrix} \xrightarrow{\frac{1}{3}R_1} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
Solution set:
$$\begin{cases} x_1 = \\ x_2 & _ \\ \end{array}$$

Parametric Vector Form:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 - 2x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix} + x_2 \begin{bmatrix} \\ \end{bmatrix}$$

Graph:

Geometrically, the solution set is a line in \mathbb{R}^2 that passes through the point $\begin{bmatrix} 3\\0 \end{bmatrix}$ and is _______ to the line through **0** and $\begin{bmatrix} -2\\1 \end{bmatrix}$.

Remark: Notice from the two examples above that the solution set of $A\mathbf{x} = \mathbf{b}$ is ______ to the solution set of $A\mathbf{x} =$ _____.

The following theorem says that when a nonhomogeneous system is consistent, we can find its solution(s) from the corresponding homogeneous system:

Theorem 1.6: Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

 $\mathbf{w} =$

where _____ is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Warning: Theorem 1.6 applies only to an equation $A\mathbf{x} = \mathbf{b}$ that has at least one ______ solution. Otherwise, the solution set is ______.