Learning Objectives

- Determine when a homogeneous system has a nontrivial solution
- Understand how to write a general solution in parametric vector form
- Understand how to write the equation of a line or plane in parametric vector form
- Understand how the solution set of $A \mathbf{x}=\mathbf{b}$ relates to the solution set of $A \mathbf{x}=\mathbf{0}$

Homogeneous Linear Systems

Definition: A system of linear equations is said to be \qquad if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.

Example: Write the following homogeneous system as a matrix equation.

$$
\begin{array}{r}
x_{1}+10 x_{2}=0 \\
2 x_{1}+20 x_{2}=0
\end{array}
$$

Without solving the system, decide whether the system has a solution in \mathbb{R}^{2}. That is, does there exist a vector \mathbf{x} in \mathbb{R}^{2} that satisfies the homogenous matrix equation?

Remark: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution, namely, $\mathbf{x}=\mathbf{0}$ (the zero vector in \mathbb{R}^{n}). This zero solution is usually called the \qquad solution.

For a given equation $A \mathbf{x}=\mathbf{0}$, the important question is whether there exists a solution, that is, a nonzero vector \mathbf{x} that satisfies $A \mathbf{x}=\mathbf{0}$.

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one \qquad .

Example: Solve the homogeneous system:

$$
\begin{gathered}
3 x_{1}+6 x_{2}=0 \\
2 x_{1}+4 x_{2}=0 \\
{\left[\begin{array}{lll}
3 & 6 & 0 \\
2 & 4 & 0
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 0
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Solution set: $\left\{\begin{array}{l}x_{1}= \\ x_{2}\end{array}\right.$
We can also write our solution as a vector:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{2} \\
x_{2}
\end{array}\right]=x_{2}[\quad]
$$

This is called the parametric vector form of the solution.
We can also graph our solution set:

Geometrically, the solution set is a ___ through $\mathbf{0}$ and $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ in \mathbb{R}^{2}.

$\underline{\text { Solutions of Nonhomogeneous Systems }}$

Example: Solve the non-homogeneous system:

$$
\begin{aligned}
& 3 x_{1}+6 x_{2}=9 \\
& 2 x_{1}+4 x_{2}=6
\end{aligned}
$$

Notice that the coefficient matrix of this system is the same as the one in the example above.

$$
\left[\begin{array}{lll}
3 & 6 & 9 \\
2 & 4 & 6
\end{array}\right] \xrightarrow{\frac{1}{3} R_{1}}\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Solution set: $\left\{\begin{array}{l}x_{1}= \\ x_{2}\end{array}\right.$

Parametric Vector Form:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3-2 x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]+\left[\begin{array}{r}
-2 x_{2} \\
x_{2}
\end{array}\right]=[\quad]+x_{2}[\quad]
$$

Graph:

Geometrically, the solution set is a line in \mathbb{R}^{2} that passes through the point $\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and is $工$ to the line through $\mathbf{0}$ and $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$.

Remark: Notice from the two examples above that the solution set of $A \mathbf{x}=\mathbf{b}$ is
\qquad to the solution set of $A \mathrm{x}=$ \qquad

The following theorem says that when a nonhomogeneous system is consistent, we can find its solution(s) from the corresponding homogeneous system:

Theorem 1.6: Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{w}=
$$

where \qquad is any solution of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Warning: Theorem 1.6 applies only to an equation $A \mathbf{x}=\mathbf{b}$ that has at least one \qquad solution. Otherwise, the solution set is \qquad -.

