Learning Objectives

- Understand what it means for a set of vectors to span \mathbb{R}^m
- Determine whether the columns of an $m \times n$ matrix span \mathbb{R}^m
- Understand how to compute $A\mathbf{x}$ for an $m \times n$ matrix A and a vector \mathbf{x} in \mathbb{R}^n
- Use linearity of matrix multiplication to compute $A(\mathbf{u} + \mathbf{v})$ or $A(c\mathbf{u})$

The Matrix Equation $A\mathbf{x} = \mathbf{b}$

Definition: If A is an $m \times n$ matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and x is a vector in \mathbb{R}^n , then the product of A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} =$$

Remark: $A\mathbf{x}$ is defined only if the number of ______ of A equals the number of entries in \mathbf{x} .

Example:
$$\begin{bmatrix} 2 & 1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 1 \\ 3 \end{bmatrix} =$$

Example: Consider the following system of linear equations

$$x_1 + 2x_2 + 1x_3 = 0$$

-2x₁ + 5x₂ + 4x₃ = 1
$$x_1 + 2x_3 = -1$$

First, write the system as a vector equation involving a linear combination of vectors.

Now, write the system as a product of a matrix and a vector.

We now have three ways to view solving a system of linear equations:

Theorem 1.3: If A is an $m \times n$ matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and if **b** is a vector in \mathbb{R}^m , the matrix equation

 $A\mathbf{x} = \mathbf{b}$

has the same solution set as the vector equation

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

Existence of Solutions

Remark: Our definition of matrix multiplication leads to the following useful fact.

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a _____ of the _____ of A.

Question: Let A be an $m \times n$ matrix. Does $A\mathbf{x} = \mathbf{b}$ have a solution for all possible \mathbf{b} ?

Example: Let $A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all possible \mathbf{b} ?

Strategy: Row reduce the augmented matrix for $A\mathbf{x} = \mathbf{b}$:

Γ	1	4	5	b_1		[1	4	5	b_1
	-3	-11	-14	b_2	\sim	0	1	1	$3b_1 + b_2$
L	2	8	10	b_3		0	0	0	$-2b_1+b_3$

Conclusion:

 $\operatorname{Span}\{\mathbf{a}_1,\ldots,\mathbf{a}_p\} =$

Theorem 1.4: Let A be an m × n matrix. Then the following statements are equivalent. That is, for a particular A, they are either all true or all false.
a. For each b in R^m, the equation ______ has a solution.
b. Each b in R^m is a ______ of the columns of A.
c. The columns of A ______ R^m.
d. A has a ______ in every row.

Example: Do the columns of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 3 & 9 \end{bmatrix}$ span \mathbb{R}^3 ?

Computing Ax

If the product $A\mathbf{x}$ is defined, then the i^{th} entry of $A\mathbf{x}$ is the dot product of row i of A and the vector \mathbf{x} .

Example: Dot product: $\begin{bmatrix} 1\\2\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix} = 1(1) + 2(2) - 1(3) = 2$

Example: Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -4 & 2 \\ 5 & 2 & 3 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Then
$$A\mathbf{x} = \begin{bmatrix} (\text{row 1 of } A) \cdot \mathbf{x} \\ (\text{row 2 of } A) \cdot \mathbf{x} \\ (\text{row 3 of } A) \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1(1) + 2(2) - 1(3) \\ -3(1) - 4(2) + 2(3) \\ 5(1) + 2(2) + 3(3) \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Definition: The _____ matrix, denoted I_n , is an $n \times n$ matrix with 1's along the diagonal and zeros everywhere else.

 $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_4 =$ Example:

Properties of the Matrix-Vector Product Ax

Theorem 1.5: If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then:

- a. $A(\mathbf{u} + \mathbf{v}) =$ _____
- b. $A(c\mathbf{u}) =$ _____

Example: Let $A = \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$.

Verify Theorem 5(a) in this case by computing $A(\mathbf{u} + \mathbf{v})$ and $A\mathbf{u} + A\mathbf{v}$.