Learning Objectives

- Use row operations to find a row echelon form of a matrix
- Use row operations to find the reduced row echelon form of a matrix
- Determine where the pivot positions are in a matrix
- Understand the difference between basic variables and free variables
- Describe the existence or uniqueness of solutions in terms of pivot positions
- Determine values of parameters that make a solution unique

Row Reduction and Echelon Forms

Definition:

- A _____ row or column in a matrix means a row or column contains at least one nonzero entry.
- A ______ of a row refers to the leftmost nonzero entry (in a nonzero row).

Definition: A matrix is in ______ (REF) if it has the following three properties:

- 1. All ______ rows are above any rows of all zeros.
- 2. Each ______ of a row is in a column to the right of the leading entry of the row above it.

3. All entries in a column below a leading entry are _____.

If a matrix in row echelon form satisfies the following additional conditions, then it is in (RREF).

- 4. The leading entry in each nonzero row is _____.
- 5. Each leading ______ is the only nonzero entry in its column.

Example: Consider the matrices

$\begin{bmatrix} 5 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & $	$\begin{array}{ccc} 7 & 0 \\ 1 & 3 \\ 0 & 1 \\ 0 & 0 \end{array}$	$\begin{array}{c}2\\9\\1\\-8\end{array}$	and	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} -3 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 9\\2\\-7\\0 \end{array}$
Lo o	0 0	۰٦		L~	0	0	0	۰٦

These matrices are both in _____ form. The second matrix is in _____ form.

Theorem 1.1: Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one _ matrix.

Pivot Positions

Definition:

- A _____ **position** in a matrix A is a location in A that corresponds to a leading 1 in the reduced row echelon form of A.
- A _____ column is a column of A that contains a pivot position.

Example: Identify the pivot positions and pivot columns in the previous example.

The Row Reduction Algorithm

This algorithm finds the reduced row echelon form of a matrix.

- 1. Begin with the leftmost nonzero column. The top position in this column is a pivot position.
- 2. If necessary, interchange rows so that a nonzero entry is in the pivot position.
- 3. Use row operations to create zeros in all positions below the pivot.
- 4. Ignore the row with the pivot and all rows above it, and apply steps 1-3 to the remaining submatrix. Repeat the process until there are no more nonzero rows.
- 5. Starting at the rightmost pivot and working up and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling the row.

Example: Apply elementary row operations to transform the following matrix first into row echelon from and then into reduced row echelon form:

0	2	-8	8
1	3	-4	5
1	-2	1	0

Solutions of Linear Systems

Definition: A	_ variable corresponds to a pivot column of the augmented
matrix, and a	variable corresponds to a non-pivot column.

Example: Solve the following linear system

$$x_1 - 5x_2 = -4$$

-2x_1 + 10x_2 + x_3 = 10
-x_1 + 5x_2 + 3x_3 = 10

First find the augmented matrix: $\begin{bmatrix} 1 & -5 & 0 & -4 \\ -2 & 10 & 1 & 10 \\ -1 & 5 & 3 & 10 \end{bmatrix}$

	1	-5	0	-4
Then use the row reduction algorithm to find the RREF:	0	0	1	2
	0	0	0	0

Basic variables:

Free variable: _____

The general solution:

Remark: Since the linear system in the last example has a ______ variable in its solution set, there are ______ solutions to this system of linear equations.

Since x_2 is a ______ variable, we can choose any value for x_2 and then use the equation we found above to solve for x_1 .

For example, when $x_2 = 0$, the solution is _____.

When $x_2 = 1$, the solution is _____.

Each different choice of x_2 determines a (different) solution of the system, and every solution of the system is determined by a choice of x_2 .

Existence and Uniqueness Questions

Theorem 1.2: Existence and Uniqueness Theorem					
A linear system is consistent if and only if the rightmost column of the augmented matrix is not a column.					
In other words, a linear system is consistent if and only if an echelon form of the augmented matrix has no row of the form					
[] with <i>b</i> nonzero					
If a linear system is consistent, then the solution set contains either					
1. a solution when there are no free variables					
2 solutions when there is at least one free variable.					

Example: The **augmented** matrices below are in row echelon form. Determine whether the corresponding linear systems have **one unique** solution, **infinitely many** solutions, or <u>**no**</u> solutions.

a.	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	e.	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 & 9 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 & 5 \end{bmatrix}$
b.	$\begin{bmatrix} 9 & 8 & 7 & 6 & 5 & 4 \\ 0 & 3 & 2 & 1 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 8 \end{bmatrix}$	f.	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
с.	$\begin{bmatrix} 1 & 3 & 5 \\ 0 & 7 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	g.	$\begin{bmatrix} 1 & 3 & 5 \\ 0 & 7 & 9 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
d.	$\begin{bmatrix} 1 & 3 & 5 \\ 0 & 7 & 9 \\ 0 & 0 & 1 \end{bmatrix}$	h.	$\begin{bmatrix} 1 & 3 & 5 \\ 0 & 7 & 9 \\ 0 & 0 & 0 \end{bmatrix}$