Álgebra Conmutativa, Fall 2019, Homework \#4

(1) Find systems of parameters for each of the following local rings:
(a) $R=\frac{\mathbb{Z}[x, y]_{(7, x, y)}}{\left(3 x^{2}-49 x y^{2}\right)}$.
(b) $R=\mathbb{C}\left[x^{5}, x^{4} y, x y^{4}, y^{5}\right]_{\left(x^{5}, x^{4} y, x y^{4}, y^{5}\right)}$.
(c) $R=\frac{\mathbb{C}[x, y, z]_{(x, y, z)}}{\left(x^{3}, x^{2} y, x^{2} z, x y z\right)}$.
(d) $R=\frac{\mathbb{C}\left[x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}\right]_{\left(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}\right)}}{\left(x_{11} x_{22}-x_{12} x_{21}, x_{11} x_{23}-x_{13} x_{21}, x_{12} x_{23}-x_{13} x_{22}\right)}$.
(2) Let K be a field, and R be a finitely generated graded K-algebra with $R_{0}=K$. Let $y_{1}, \ldots, y_{t} \in R$ be homogeneous. Show that $\left\{y_{1}, \ldots, y_{t}\right\}$ is a homogeneous system of parameters of R if and only if $K\left[y_{1}, \ldots, y_{t}\right]$ is a (graded) Noether normalization of R.
(3) An $n \times n$ magic square with row sum t is an $n \times n$ matrix with nonnegative integer entries such that every row and every column adds up to t. Show that, if n is fixed, the function

$$
f_{n}(t)=\text { number of } n \times n \text { magic squares with row sum } t
$$

agrees with a polynomial ${ }^{1}$ for $t \gg 0$.
(4) Let K be a field. Let $\mathfrak{p} \subset R:=K\left[x_{1}, \ldots, x_{m}\right]$ and $\mathfrak{q} \subset S:=K\left[y_{1}, \ldots, y_{n}\right]$ be prime ideals. Let $T=R \otimes_{K} S=K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$. Show that $\operatorname{dim}(T /(\mathfrak{p} T+\mathfrak{q} T))=$ $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(S / \mathfrak{q})$.
(5) Let K be a field, $R:=K\left[x_{1}, \ldots, x_{n}\right], \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$, and $\mathfrak{p}, \mathfrak{q} \subseteq \mathfrak{m}$ be prime ideals. Then $\operatorname{height}(\mathfrak{p})+\operatorname{height}(\mathfrak{q}) \geq \operatorname{height}(\mathfrak{p}+\mathfrak{q}) .{ }^{2}$
(6) Let K be a field, and $R:=K\left[x_{1}, x_{2}, x_{3}, x_{4}\right] /\left(x_{1} x_{2}-x_{3} x_{4}\right)$. Find prime ideals $\mathfrak{p}, \mathfrak{q} \subset$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, such that $\operatorname{height}(\mathfrak{p})+\operatorname{height}(\mathfrak{q})<\operatorname{height}(\mathfrak{p}+\mathfrak{q})$.

[^0]
[^0]: ${ }^{1}$ Hint: Consider the K-algebra $K\left[x_{11}^{a_{11}} x_{12}^{a_{12}} \cdots x_{n n}^{a_{n n}} \mid A=\left[a_{i j}\right]\right.$ is a magic square $]$
 ${ }^{2}$ Hint: Let $S=K\left[y_{1}, \ldots, y_{n}\right]$ and \mathfrak{q}^{\prime} be the same ideal as \mathfrak{q} in the y variables. Use the fact that $R /(\mathfrak{p}+\mathfrak{q}) \cong$ $\left(R \otimes_{K} S\right) /\left(\mathfrak{p}+\mathfrak{q}^{\prime}+\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right)\right)$.

