Álgebra Conmutativa, Fall 2019, Homework #4

(1) Find systems of parameters for each of the following local rings:

(a)
$$R = \frac{\mathbb{Z}[x, y]_{(7,x,y)}}{(3x^2 - 49xy^2)}.$$

(b) $R = \mathbb{C}[x^5, x^4y, xy^4, y^5]_{(x^5, x^4y, xy^4, y^5)}.$
(c) $R = \frac{\mathbb{C}[x, y, z]_{(x,y,z)}}{(x^3, x^2y, x^2z, xyz)}.$
(d) $R = \frac{\mathbb{C}[x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}]_{(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23})}{(x_{11}x_{22} - x_{12}x_{21}, x_{11}x_{23} - x_{13}x_{21}, x_{12}x_{23} - x_{13}x_{22})}.$

- (2) Let K be a field, and R be a finitely generated graded K-algebra with $R_0 = K$. Let $y_1, \ldots, y_t \in R$ be homogeneous. Show that $\{y_1, \ldots, y_t\}$ is a homogeneous system of parameters of R if and only if $K[y_1, \ldots, y_t]$ is a (graded) Noether normalization of R.
- (3) An $n \times n$ magic square with row sum t is an $n \times n$ matrix with nonnegative integer entries such that every row and every column adds up to t. Show that, if n is fixed, the function

 $f_n(t) =$ number of $n \times n$ magic squares with row sum t

agrees with a polynomial¹ for $t \gg 0$.

- (4) Let K be a field. Let $\mathfrak{p} \subset R := K[x_1, \dots, x_m]$ and $\mathfrak{q} \subset S := K[y_1, \dots, y_n]$ be prime ideals. Let $T = R \otimes_K S = K[x_1, \dots, x_m, y_1, \dots, y_n]$. Show that $\dim(T/(\mathfrak{p}T + \mathfrak{q}T)) = \dim(R/\mathfrak{p}) + \dim(S/\mathfrak{q})$.
- (5) Let K be a field, $R := K[x_1, \ldots, x_n]$, $\mathfrak{m} = (x_1, \ldots, x_n)$, and $\mathfrak{p}, \mathfrak{q} \subseteq \mathfrak{m}$ be prime ideals. Then height(\mathfrak{p}) + height(\mathfrak{q}) \geq height($\mathfrak{p} + \mathfrak{q}$).²
- (6) Let K be a field, and $R := K[x_1, x_2, x_3, x_4]/(x_1x_2 x_3x_4)$. Find prime ideals $\mathfrak{p}, \mathfrak{q} \subset (x_1, x_2, x_3, x_4)$, such that $\operatorname{height}(\mathfrak{p}) + \operatorname{height}(\mathfrak{q}) < \operatorname{height}(\mathfrak{p} + \mathfrak{q})$.

¹Hint: Consider the K-algebra $K[x_{11}^{a_{11}}x_{12}^{a_{12}}\cdots x_{nn}^{a_{nn}} \mid A = [a_{ij}]$ is a magic square]

²Hint: Let $S = K[y_1, \ldots, y_n]$ and \mathfrak{q}' be the same ideal as \mathfrak{q} in the y variables. Use the fact that $R/(\mathfrak{p} + \mathfrak{q}) \cong (R \otimes_K S)/(\mathfrak{p} + \mathfrak{q}' + (x_1 - y_1, \ldots, x_n - y_n)).$