Álgebra Conmutativa, Fall 2019, Homework \#3

Definition: A ring homomorphism $\phi: R \rightarrow S$ is faithfully flat if ϕ is flat and for every nonzero R-module M, the S-module $S \otimes_{R} M$ is nonzero.
(1) Show that, in each of the three cases specified below, ϕ is faithfully flat.
(a) (R, \mathfrak{m}) and (S, \mathfrak{n}) are local rings, and $\phi: R \rightarrow S$ is a flat homomorphism with $\phi(\mathfrak{m}) \subseteq \mathfrak{n}$.
(b) $\alpha: R \rightarrow S$ is a faithfully flat map, T is an R-algebra, and $\phi=\alpha \otimes T: T \rightarrow S \otimes_{R} T$.
(c) $K \subseteq L$ are fields, R is a K-algebra, and $\phi: R \rightarrow L \otimes_{K} R$ is the map $\phi(r)=1 \otimes r$.
(2) Let $\phi: R \rightarrow S$ be faithfully flat.
(a) Show ${ }^{1}$ that ϕ is injective.
(b) Show that ϕ^{*} is surjective.
(3) Show that any flat homomorphism satisfies the conclusion of the "going down" theorem.
(4) Each of the following rings is a domain. Find its dimension.
(a) $\mathbb{C}\left[x^{3} y^{3}, x^{3} y^{2} z, x^{3} z^{3}\right] \subseteq \mathbb{C}[x, y, z]$.
(b) $R=\frac{\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]}{\left(x_{1} x_{3}-x_{2}^{2}, x_{2} x_{4}-x_{3}^{2}, x_{1} x_{4}-x_{2} x_{3}\right)}$.
(c) $R=\frac{\mathbb{C}\left[x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}\right]}{\left(x_{11} x_{22}-x_{12} x_{21}, x_{11} x_{23}-x_{13} x_{21}, x_{12} x_{23}-x_{13} x_{22}\right)}$.
(5) Let $R=\mathbb{C}[x, y, z]$, and $I=\left(x^{3}, x^{2} y, x^{2} z, x y z\right)$. Find a prime filtration of R / I and a primary decomposition of I.
(6) Let R be a Noetherian ring, and I be an ideal. Consider a collection of minimal primary decompositions of I :

$$
I=\mathfrak{q}_{1, \alpha} \cap \cdots \cap \mathfrak{q}_{s, \alpha}, \quad \alpha \in \Lambda
$$

where, for each $\alpha, \sqrt{\mathfrak{q}_{i, \alpha}}=\mathfrak{p}_{i}$.
(a) Suppose that \mathfrak{p}_{j} is not contained in any other associated prime of I, and let $W=$ $R \backslash \bigcup_{i \neq j} \mathfrak{p}_{i}$. Find some minimal primary decompositions of $I\left(W^{-1} R\right) \cap R$.
(b) Show (by induction on s) that if we we take components $\mathfrak{q}_{1, \alpha_{1}}, \ldots, \mathfrak{q}_{s, \alpha_{s}}$ from different primary decompositions of I, that we can put them together to get a primary decomposition of I; namely $I=\mathfrak{q}_{1, \alpha_{1}} \cap \cdots \cap \mathfrak{q}_{s, \alpha_{s}}$.

[^0]
[^0]: ${ }^{1}$ Hint: Show that for any ideal $J \subseteq R, J \otimes_{R} S \cong J S$, and let J be the kernel of ϕ.

