Álgebra Conmutativa, Fall 2019, Homework #2

- (1) Describe all of the elements of $\operatorname{Spec}(\mathbb{C}[x])$ and $\operatorname{Spec}(\mathbb{R}[x])$, and describe the map $\operatorname{Spec}(\mathbb{C}[x]) \to \operatorname{Spec}(\mathbb{R}[x])$ induced by the inclusion map $\mathbb{R}[x] \subseteq \mathbb{C}[x]$.
- (2) Let K be an algebraically closed field. Let $R = K[x_1, \ldots, x_m]/I$ and $S = K[y_1, \ldots, y_n]/J$ be finitely generated K-algebras. Let $\varphi : R \to S$ be a K-algebra homomorphism; write $\varphi(x_i) = f_i(y_1, \ldots, y_n)$ for some polynomial f_i . Recall that any $\mathbf{n} \in \max(S)$ can be written as $\mathbf{n} = \mathbf{n}_{\underline{b}} := (y_1 - b_1, \ldots, y_n - b_n)$ for some $\underline{b} = (b_1, \ldots, b_n) \in Z_K(J)$, and similarly for $\mathbf{m} \in \max(R)$. Thus, for the map on maximal ideals

$$\varphi^* : \max(S) \to \max(R) \qquad \varphi^*(\mathfrak{n}) = \varphi^{-1}(\mathfrak{n})$$

we can write $\varphi^*(\mathfrak{n}_{\underline{b}}) = \mathfrak{m}_{\underline{a}}$ for some $\underline{a} \in Z_K(I)$. Find a formula for \underline{a} in terms of \underline{b} and f_1, \ldots, f_m .

- (3) Let R be a ring of characteristic p > 0.
 - (a) Show that the map $F: R \to R$ given by $F(r) = r^p$ is a ring homomorphism.
 - (b) Show that F is module-finite if and only if it is algebra-finite.
 - (c) Show that the map on spectra induced by F is the identity map.
- (4) Let R be a finitely generated Z-algebra, and $\mathfrak{m} \subseteq R$ a maximal ideal. Show that R/\mathfrak{m} is finite.
- (5) Let R be a ring and I an ideal. A minimal prime of I is a prime \mathfrak{p} such that $I \subseteq \mathfrak{q} \subseteq \mathfrak{p}$ and \mathfrak{q} prime implies that $\mathfrak{q} = \mathfrak{p}$. We write $\operatorname{Min}(I)$ for the set of minimal primes of I. Show that $V(I) = \bigcup_{\mathfrak{p} \in \operatorname{Min}(I)} V(\mathfrak{p})$. Conclude that $\sqrt{I} = \bigcap_{\mathfrak{p} \in \operatorname{Min}(I)} \mathfrak{p}$.
- (6) Let K be a field, and $\Phi_f: K^n \to K^n$ be given by the rule

$$\Phi_f(x_1,\ldots,x_n) = (f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$$

where $\underline{f} = f_1, \ldots, f_n$ are polynomials in $\underline{x} = x_1, \ldots, x_n$. Let $\underline{y} = y_1, \ldots, y_n$ be another set of variables.

(a) Show that $\Phi_{\underline{f}}$ is not surjective if and only if there is some $\underline{a} \in K^n$ such that the system

$$Z_K(f_1(\underline{x}) - a_1, \dots, f_n(\underline{x}) - a_n) = \emptyset.$$

has no solution over K.

(b) Show that Φ_f is *injective* if and only if

$$Z_K(f_1(\underline{x}) - f_1(\underline{y}), \dots, f_n(\underline{x}) - f_n(\underline{y})) \subseteq Z_K(x_i - y_i)$$
 for each *i*.

(c) Suppose that $K = \mathbb{C}$, and that $\Phi_{\underline{f}}$ is injective but not surjective. Show that there exist $g_i(\underline{x}), h_{i,j}(\underline{x}, y) \in \mathbb{C}[\underline{x}, y]$ and integers t_j for each j such that

$$\sum_{i} g_i(\underline{x})(f_i(\underline{x}) - a_i) = 1, \quad (x_j - y_j)^{t_j} = \sum_{i} h_{i,j}(\underline{x}, \underline{y})(f_i(\underline{x}) - f_i(\underline{y})) \quad \text{in } \mathbb{C}[\underline{x}, \underline{y}].$$

Setting $R = \mathbb{Z}[\{\text{coefficients of } f_i \text{'s, } g_i \text{'s, } h_{i,j} \text{'s}\}, a_1, \ldots, a_n]$, conclude that the same equalities hold in a polynomial ring over R, which in particular is a finitely generated \mathbb{Z} -algebra.

(d) Prove the Ax-Grothendieck Theorem: If $K = \mathbb{C}$, and $\Phi_{\underline{f}}$ as above is injective, then it is surjective.¹

¹Hint: Use problem #4!

- (Bonus) Let K be a field, $R = K[x_1, \ldots, x_d]$, G be a finite group of order |G| = N, and assume that $char(K) \nmid N$. Let G act linearly on R.
 - (a) Let $\{f_{\sigma} \mid \sigma \in G\}$ be N homogeneous elements of R, not necessarily distinct. Consider the element

$$\alpha = \sum_{\tau \in G} \left(\prod_{\sigma \in G} \left(f_{\sigma} - \tau \sigma(f_{\sigma}) \right) \right)$$

Show that $\alpha = 0$.

- (b) Expand out the binomials on in the expression for α , and collect terms to give an expression of the form $\alpha = \sum_{\tau \in G} \prod_{S \subseteq G} \Phi_S$ for some Φ_S . Use this expression to show that $\prod_{\sigma \in G} f_{\sigma} \in (\mathbb{R}^G)_+ \cdot \mathbb{R}$. Conclude that $\mathbb{R}_{\geq N}$, the ideal of elements of \mathbb{R} generated by homogeneous elements of degree at least N, is contained in $(R^G)_+ \cdot R$. (c) Use part (b) to show that R^G is generated as a K-algebra by elements of degree $\leq N$.
- (d) Explain how you can use part (c) to give an algorithm to compute the ring of invariants.
- (e) Find a complete set of generators and relations for the ring of invariants of the action in problem #3 of HW #1.