Álgebra Conmutativa, Fall 2019, Homework \#2

(1) Describe all of the elements of $\operatorname{Spec}(\mathbb{C}[x])$ and $\operatorname{Spec}(\mathbb{R}[x])$, and describe the map $\operatorname{Spec}(\mathbb{C}[x]) \rightarrow$ $\operatorname{Spec}(\mathbb{R}[x])$ induced by the inclusion map $\mathbb{R}[x] \subseteq \mathbb{C}[x]$.
(2) Let K be an algebraically closed field. Let $R=K\left[x_{1}, \ldots, x_{m}\right] / I$ and $S=K\left[y_{1}, \ldots, y_{n}\right] / J$ be finitely generated K-algebras. Let $\varphi: R \rightarrow S$ be a K-algebra homomorphism; write $\varphi\left(x_{i}\right)=$ $f_{i}\left(y_{1}, \ldots, y_{n}\right)$ for some polynomial f_{i}. Recall that any $\mathfrak{n} \in \max (S)$ can be written as $\mathfrak{n}=\mathfrak{n}_{\underline{b}}:=$ $\left(y_{1}-b_{1}, \ldots, y_{n}-b_{n}\right)$ for some $\underline{b}=\left(b_{1}, \ldots, b_{n}\right) \in Z_{K}(J)$, and similarly for $\mathfrak{m} \in \max (R)$. Thus, for the map on maximal ideals

$$
\varphi^{*}: \max (S) \rightarrow \max (R) \quad \varphi^{*}(\mathfrak{n})=\varphi^{-1}(\mathfrak{n})
$$

we can write $\varphi^{*}\left(\mathfrak{n}_{\underline{b}}\right)=\mathfrak{m}_{\underline{a}}$ for some $\underline{a} \in Z_{K}(I)$. Find a formula for \underline{a} in terms of \underline{b} and f_{1}, \ldots, f_{m}.
(3) Let R be a ring of characteristic $p>0$.
(a) Show that the map $F: R \rightarrow R$ given by $F(r)=r^{p}$ is a ring homomorphism.
(b) Show that F is module-finite if and only if it is algebra-finite.
(c) Show that the map on spectra induced by F is the identity map.
(4) Let R be a finitely generated \mathbb{Z}-algebra, and $\mathfrak{m} \subseteq R$ a maximal ideal. Show that R / \mathfrak{m} is finite.
(5) Let R be a ring and I an ideal. A minimal prime of I is a prime \mathfrak{p} such that $I \subseteq \mathfrak{q} \subseteq \mathfrak{p}$ and \mathfrak{q} prime implies that $\mathfrak{q}=\mathfrak{p}$. We write $\operatorname{Min}(I)$ for the set of minimal primes of I. Show that $V(I)=\bigcup_{\mathfrak{p} \in \operatorname{Min}(I)} V(\mathfrak{p})$. Conclude that $\sqrt{I}=\bigcap_{\mathfrak{p} \in \operatorname{Min}(I)} \mathfrak{p}$.
(6) Let K be a field, and $\Phi_{f}: K^{n} \rightarrow K^{n}$ be given by the rule

$$
\Phi_{\underline{f}}\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where $\underline{f}=f_{1}, \ldots, f_{n}$ are polynomials in $\underline{x}=x_{1}, \ldots, x_{n}$. Let $\underline{y}=y_{1}, \ldots, y_{n}$ be another set of variables.
(a) Show that $\Phi_{\underline{f}}$ is not surjective if and only if there is some $\underline{a} \in K^{n}$ such that the system

$$
Z_{K}\left(f_{1}(\underline{x})-a_{1}, \ldots, f_{n}(\underline{x})-a_{n}\right)=\varnothing \text {. }
$$

has no solution over K.
(b) Show that $\Phi_{\underline{f}}$ is injective if and only if

$$
Z_{K}\left(f_{1}(\underline{x})-f_{1}(\underline{y}), \ldots, f_{n}(\underline{x})-f_{n}(\underline{y})\right) \subseteq Z_{K}\left(x_{i}-y_{i}\right) \quad \text { for each } i
$$

(c) Suppose that $K=\mathbb{C}$, and that Φ_{f} is injective but not surjective. Show that there exist $g_{i}(\underline{x}), h_{i, j}(\underline{x}, \underline{y}) \in \mathbb{C}[\underline{x}, \underline{y}]$ and integers t_{j} for each j such that
$\sum_{i} g_{i}(\underline{x})\left(f_{i}(\underline{x})-a_{i}\right)=1, \quad\left(x_{j}-y_{j}\right)^{t_{j}}=\sum_{i} h_{i, j}(\underline{x}, \underline{y})\left(f_{i}(\underline{x})-f_{i}(\underline{y})\right) \quad$ in $\mathbb{C}[\underline{x}, \underline{y}]$.
Setting $R=\mathbb{Z}\left[\left\{\right.\right.$ coefficients of f_{i} 's, g_{i} 's, $h_{i, j}$'s $\left.\}, a_{1}, \ldots, a_{n}\right]$, conclude that the same equalities hold in a polynomial ring over R, which in particular is a finitely generated \mathbb{Z}-algebra.
(d) Prove the Ax-Grothendieck Theorem: If $K=\mathbb{C}$, and $\Phi_{\underline{f}}$ as above is injective, then it is surjective. ${ }^{1}$

[^0](Bonus) Let K be a field, $R=K\left[x_{1}, \ldots, x_{d}\right], G$ be a finite group of order $|G|=N$, and assume that $\operatorname{char}(K) \nmid N$. Let G act linearly on R.
(a) Let $\left\{f_{\sigma} \mid \sigma \in G\right\}$ be N homogeneous elements of R, not necessarily distinct. Consider the element
$$
\alpha=\sum_{\tau \in G}\left(\prod_{\sigma \in G}\left(f_{\sigma}-\tau \sigma\left(f_{\sigma}\right)\right)\right) .
$$

Show that $\alpha=0$.
(b) Expand out the binomials on in the expression for α, and collect terms to give an expression of the form $\alpha=\sum_{\tau \in G} \prod_{S \subseteq G} \Phi_{S}$ for some Φ_{S}. Use this expression to show that $\prod_{\sigma \in G} f_{\sigma} \in\left(R^{G}\right)_{+} \cdot R$. Conclude that $R_{\geq N}$, the ideal of elements of R generated by homogeneous elements of degree at least N, is contained in $\left(R^{G}\right)_{+} \cdot R$.
(c) Use part (b) to show that R^{G} is generated as a K-algebra by elements of degree $\leq N$.
(d) Explain how you can use part (c) to give an algorithm to compute the ring of invariants.
(e) Find a complete set of generators and relations for the ring of invariants of the action in problem \#3 of HW \#1.

[^0]: ${ }^{1}$ Hint: Use problem \#4!

