Álgebra Conmutativa, Fall 2019, Homework \#1

(1) Let K be a field, and $R:=K\left[x^{2}, x^{3}\right] \subseteq S:=K[x]$. Let $I=x^{2} R$. Show that $I S \cap R \supsetneqq I$, and conclude that R is not a direct summand of S.
(2) Let $f_{1}, \ldots, f_{n} \in R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Show that if the homomorphism determined by $x_{i} \mapsto f_{i}$ is an automorphism of R, then $\operatorname{det}\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}\end{array}\right] \in R$ is a nonzero constant.
(3) Let a two generated group $G=\langle\sigma, \tau\rangle$ act on $R:=\mathbb{C}[x, y]$ by the rules $\left.\sigma\right|_{\mathbb{C}}=\left.\tau\right|_{\mathbb{C}}=\mathrm{id}_{\mathbb{C}}$, and

$$
\sigma \cdot\binom{x}{y}=\binom{i x}{-i y} \quad \text { and } \quad \tau \cdot\binom{x}{y}=\binom{y}{-x} .
$$

(a) Find two linearly independent invariants of degree 4 in R^{G}, and a nonzero invariant of degree 6 in R^{G}.
(b) Find a nonzero relation on the three invariants you found.
(4) Let $R=\frac{\mathbb{C}[x, y, u, v]}{(x y-u v)}$. Find three polynomials f_{1}, f_{2}, f_{3} such that f_{1}, f_{2}, f_{3} are algebraically independent and $S:=\mathbb{C}\left[f_{1}, f_{2}, f_{3}\right] \subseteq R$ is module-finite. Find a generating set for R as an S-module. ${ }^{1}$
(5) Let R be a ring, and M an R-module. The Nagata idealization of (R, M) is the ring $R \rtimes M$ such that

- as a set, $R \rtimes M=R \times M$;
- the addition is $(r, m)+(s, n)=(r+s, m+n)$;
- the multplication is $(r, m)(s, n)=(r s, s m+r n)$.
(a) Check that $R \rtimes M$ with the operations specified about is a commutative ring.
(b) Let R be a ring that is not Noetherian, and I an ideal that is not finitely generated. Show that ${ }^{2} R \subseteq R \rtimes I \subseteq R \rtimes R$, that $R \subseteq R \rtimes R$ is module-finite, but $R \subseteq R \rtimes I$ is not.
(6) This problem is about rings of invariants of infinite groups. Let K be an infinite field, and $R=K\left[x_{1}, \ldots, x_{n}\right]$. Throughout this problem, G acts linearly on R (so $K \subseteq R^{G}$).
(a) Let G act on R in such a way that for every $g \in G$ and every monomial $\mu \in R, g \cdot \mu$ is a scalar multiple of μ. Show that R^{G} is generated as a K-vector space, and as a K-algebra, by monomials.
(b) Let $G=\left(K^{\times}\right)^{m}$ act on R by the rule

$$
\left(\lambda_{1}, \ldots, \lambda_{m}\right) \cdot x_{1}=\lambda_{1}^{a_{11}} \cdots \lambda_{m}^{a_{m 1}} x_{1}, \quad \cdots \quad,\left(\lambda_{1}, \ldots, \lambda_{m}\right) \cdot x_{n}=\lambda_{1}^{a_{1 n}} \cdots \lambda_{m}^{a_{m n}} x_{n}
$$

for some $a_{i j} \in \mathbb{Z}$. Let $A=\left[a_{i j}\right]$. Show that R^{G} has as a K-vector space basis the set of monomials $\mu=x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ such that $A \cdot\left[b_{1}, \ldots, b_{n}\right]^{T}=0$ with $b_{1}, \ldots, b_{n} \geq 0$.
(c) In the same setting as in part (b), show that R^{G} is a direct summand of R. Conclude that R^{G} is a generated as a K-algebra by finitely many monomials.
(d) Let $G=K^{\times}$act on $K[x, y, z, u, v]$ by

$$
\lambda \cdot x=\lambda x, \quad \lambda \cdot y=\lambda y, \quad \lambda \cdot z=\lambda z, \quad \lambda \cdot u=\lambda^{-1} u, \quad \lambda \cdot v=\lambda^{-1} v
$$

Find a set of generators for R^{G} as a K-algebra.

[^0]
[^0]: ${ }^{1}$ Hint: Taking three variables won't work, but you can find three linear forms that do work.
 ${ }^{2}$ Note that R is a subring of $R \rtimes M$ (via the inclusion $r \mapsto(r, 0)$), and as an R-module, $R \rtimes M \cong R \oplus M$.

