
Where’s the Math in Origami?

Origami may not seem like it involves very much mathematics. Yes, origami involves symmetry. If we

build a polyhedron then, sure, we encounter a shape from geometry. Is that as far as it goes? Do any

interesting mathematical questions arise from the process of folding paper? Is there any deep mathematics

in origami? Is the mathematics behind origami useful for anything other than making pretty decorations?

People who spend time folding paper often ask themselves questions that are ultimately mathematical in

nature. Is there a simpler procedure for folding a certain figure? Where on the original square paper do

the wings of a crane come from? What size paper should I use to make a chair to sit at the origami table

I already made? Is it possible to make an origami beetle that has six legs and two antennae from a single

square sheet of paper? Is there a precise procedure for folding a paper into five equal strips?

In the last few decades, folders inspired by questions like these have revolutionized origami by bringing

mathematical techniques to their art. In the early 1990s, Robert Lang proved that for any number of

appendages there is an origami base that can produce the desired effect from a single square sheet of

paper. Robert has created a computer program that can design a somewhat optimized base for any stick

figure outline. This has enabled many folders to create origami animals that were considered impossible

years ago.

Recently, mathematical origami theory has been applied to produce an amazing range of practical appli-

cations. New technologies being developed include: paper product designs involving no adhesives, better

ways of folding maps, unfolding space telescopes and solar sails, software systems that test the safety of

airbag packings for car manufacturers, and self-organizing artificial intelligence systems.

Challenge Problems For Sonobe Modules

• Using two colors, is it possible to construct a cube so that both colors appear on each face?

• Using three colors, is it possible to construct a cube so that only two of the three colors appear on

each face?

• Using three colors, is it possible to construct a cube so that all three colors appear on each face?

• Using Sonobe units, can you build a stellated octahedron? A stellated icosahedron?

• Can you use Sonobe units to design your own unusual polyhedron?

• What is the smallest number of Sonobe units you need to make a polyhedron?

• How many different polyhedra can you make using six or fewer Sonobe units? Seven?

• A Sonobe polyhedron is three-colorable if there is a way to construct it using only three colors so

that no module inserts into a module of the same color. Can you find a three-coloring for a stellated

octahedron? What about for a stellated icosahedron? Can you find any polyhedra that are not

three-colorable?



Sonobe Origami Units

Crease paper down the middle

and unfold

Fold edges to center line and

unfold

Fold top right and bottom left

corners — do not let the

triangles cross crease lines

Fold triangles down to make

sharper triangles — do not

cross the crease lines

Fold along vertical crease lines Fold top left corner down to

right edge

Fold bottom right corner up to

left edge

Undo the last two folds

Tuck upper left corner under

flap on opposite side and

repeat for lower right corner

Turn the paper over, crease

along dashed lines as shown to

complete the module

Corners of one module fit into

pockets of another A cube requires six modules

Sonobe modules also make

many other polyhedra



Broacde Flowers (Design by Minako Ishibashi)

Fold edges to center line Fold top left corner to right

edge. Fold bottom right

corner to left edge.

Completely unfold the paper Fold all four corners to meet

vertical crease lines

Fold the sides to meet vertical

crease lines

Fold along the existing

diagonal crease line

Fold the bottom edge of the

flap up. At the same time, fold

the left edge in and squash.

Repeat the last two steps with

the bottom right corner

Tuck the lower triangle under

the left flap

Turn the paper over
Crease along dashed lines to

complete the module
You need six units to form a

cube. When the cube is assem-

bled lift the flaps up so that

they form circular bands.



Star Kusadama Ornament (Design by Tomoko Fusé)

Fold edges to center line and

unfold

Fold top left corner to right

edge. Fold bottom right

corner to left edge.

Undo the folds in the last step

and rotate the paper

Inside reverse fold the paper

along the existing crease line

Fold the flap to the right Inside reverse fold the paper

along the existing crease line
Fold flap to the left

Turn the paper over, crease

along dashed lines as shown

Undo the last two folds and

turn the paper over. Fold the

triangles backwards and tuck

them behind.

Pull on the indicated corners

to bring flaps to the top

Wrap the corners around

behind the module. Open the center to look

inside the module



Star Kusadama Ornament (continued)

Open the center further and

squash in half Fold the left half of the

upper edge to meet the

diagonal crease. Fold the right

half backwards to meet the

crease in back. Crease well

and then unfold.

Inside reverse fold along the

crease lines

The finished unit. The corner

of one unit inserts into a slit in

the edge of another unit. You

need 30 units to make a star

kusadama ornament.

Units fit together in groups of

three. Five groups of three

form each star.



Origami Axioms

Given a piece of paper, it is possible to fold lots of different lines on it. However, only some of those lines
are constructible lines, meaning that we can give precise rules for folding them without using a ruler or
other tool. Each fundamental folding rule is called an origami axiom.

When we start with a square piece of paper, we begin with four marked lines (the four edges) and four
marked points (the four corners). Any crease created by applying an origami axiom to existing marked
points and lines is a new marked line. Any place where two marked lines cross is a new marked point.

There are seven origami axioms in all.

• O1 – Given two marked points, we can fold a marked line connecting them.

P

Q

• O2 – Given two marked points P and Q, we can fold a marked line that places P on top of Q.

P

Q



• O3 – Given two marked lines l and m, we can fold a marked line that places l on top of m.

l

m

• O4 – Given a marked point P and a marked line l, we can fold a marked line perpendicular to l
passing through P .

P

l

• O5 – Given two marked points P and Q and a marked line l, we can fold a marked line passing
through Q that places P on l.

l

Q P



• O6 – Given two marked points P and Q and two marked lines l and m, we can fold a marked line
that places P on l and Q on m.

P Q
m

l

• O7 – Given a marked point P and two marked lines l and m, we can fold a marked line perpendicular
to l that places P on m.

m

l

P

Restrictions on applying these axioms

• O1 – The fold exists and is unique for any two distinct points.

• O2 – The fold exists and is unique for any two distinct points.

• O3 – The fold exists and is unique for any two distinct lines.

• O4 – The fold exists and is unique for any point and any line.

• O5 – The fold does not always exist, and there can be up to two different folds that satisfy it. In this
axiom, the point P is the focus for a parabola and the line l is its directrix. The assertion is that
we can find a tangent line for the parabola through Q. There are no tangent lines through points
in the interior of the parabola. Therefore, if Q lies inside the parabola determined by P and l, no
tangent fold exists. If Q is any point outside of the parabola, two tangent folds exist. If Q is on the
boundary, there is exactly one tangent fold. If P lies on l, the parabola is infinitely skinny and has
no interior. Thus, in this case, Q can be anything and this axiom becomes equivalent to O4.

• O6 – The fold does not always exist and it is not unique in general. In this axiom, P is the focus for
a parabola with directrix l and Q is the focus for a parabola with directrix m. Since folding a point
to a line always gives us a tangent to the parabola they determine, the action of taking two points to



two lines makes the fold a tangent for both parabolas simultaneously. There are at most three such
tangents for two parabolas, making this problem a cubic in general. There can also be two tangents,
one tangent, or no tangents.

• O7 – This axiom is equivalent to O6 in the case where one of the points is on one of the lines.

O1 through O5 are sufficient to duplicate any straightedge and compass

construction

Here is how constructibility works. We are given the points (0, 0) and (1, 0) in the plane. We want to know
which points in the plane can be constructed by straight-edge and compass. These constructible points are
precisely those with coordinates which are solutions to some equation ax2 + bx+ c = 0, where a, b, and c
are integers. Using the quadratic formula, we know that the solutions of this equation are given by

x =
−b±

√
b2 − 4ac

2a
,

where a, b, and c are integers.

Thus, we need to verify that we can use the origami axioms to add, subtract, multiply, and divide given
lengths. We also need to be able to take the square root of a given length.

Adding and subtracting lengths

To add two given lengths, we need to be able to copy a length from one line segment to a particular place
on another. One way to do this is to use O3 to fold the first line onto the second. This will place the
segment somewhere on the line. We now need to move one end of the segment to a particular point, and
make the other end of the segment lie in our preferred direction on the line. It is possible that the point
we are trying to hit lies in the middle of the segment. In this case, we first use O4 to make a perpendicular
fold through one of the end points, we copy the segment to that part of the line, and then unfold. Now
we have a segment which does not touch the point we want to hit. We use O2 to fold the near endpoint
of the segment to the target point. The segment may or may not be going in the desired direction. If it is
not, we use O4 through the target point to fold the line segment in the other direction.

Notice that by copying one segment to the end point of another segment so that they both lie on the same
line will allow us to add the lengths. To subtract lengths, we need to copy the segment on top of the other
one to find the difference in their lengths.

Multiplication and division

To multiply two given segments of length a and b, we first place them so that they form an acute angle. We
can do this using the copying lengths methods already discussed. Next, we copy the unit length segment
onto the line containing segment b so that one end of the unit length segment lies at the angle vertex.

We now use O1 to create a line from the end of a to the end of the unit segment. We now need to construct
a parallel line through the point at the end of b. We can use O4 twice to do this, for example. Now we
mark the point on the line containing a which intersects this parallel line. The length from the vertex to
this point is ab by similar triangles.



We use a similar procedure to divide a by b. The set-up is the same, but this time, we use O1 to connect
the end of a to the end of b. Now we construct a parallel line through the end of the unit length. The point
on the line containing a which intersects this parallel is the end point of a segment of length a/b.

Finding a square root

A good way to take the square root of a length n is to ask the parabola y = x2 to do it for you. We begin
by copying n onto the y-axis. We construct the horizontal line y = n at this height using O4 twice.

Next we mark the focus at (0, 1/4) and a point at (0,−n) (which are both constructible). We then use
O5 to create a fold through the focus which takes the other endpoint to the horizontal line. We know the
image point will be on the parabola y = x2 because the distance from the focus to the image point is equal
to n+ 1/4, which is also the distance from the image point to the directrix at y = −1/4. The two points
on the horizontal line where the image point can be are therefore

√
n units away from the vertical line

x = 0.

We know that it is not always possible to use O5, so let us consider whether we have used it safely in this
construction. When we use O5, we are using the horizontal line at y = n as the directrix of the parabola
whose tangent line we are constructing. We are using (O,−n) as the focus of this parabola. The parabola
therefore has vertex at (0,0) and opens downwards. Since the point we are finding a tangent through is at
(0, 1/4) the desired tangent line exists and so the construction is always possible.

O2, O5, and O6 are the only essential axioms

We used all five of the origami axioms in the constructions above, but we only really need O2 and O5 to
accomplish O1, O3, and O4. We have not analyzed the power axiom O6 which allows us to trisect angles,
double cubes, and otherwise solve cube roots. However, O7 is really O6 in disguise, as we pointed out
earlier.

O4 is really a special case of O5 as we pointed out before.

O1 can be replaced by O2 and O5 together. First use O2 to construct the perpendicular bisector. Use O5
on the two original points and the constructed line to mark two points on the perpendicular bisector. Now
use O2 to bring these points together. This constructs the line needed for O1.

O3 is also easily replaced by O2 and O5. If the two lines are parallel, we use the O4 version of O5 to
construct a perpendicular to both of them and then use O2 to bring one intersection point to the other. If
the two lines are not parallel, we first mark the intersection point and a different arbitrary point P on one
of the lines. We use O5 to make a fold through the intersection point that brings point P onto the other
line. This accomplishes O3.

O6 relates to a cubic equation

See Thomas Hull’s article “Solving Cubics with Creases: The Work of Beloch and Lill” in the MAA
monthly, April 2011.



Solving Cubics With Creases:
The Work of Beloch and Lill

Thomas C. Hull

Abstract. Margharita P. Beloch was the first person, in 1936, to realize that origami (paper-
folding) constructions can solve general cubic equations and thus are more powerful than
straightedge and compass constructions. We present her proof. In doing this we use a delightful
(and mostly forgotten?) geometric method due to Eduard Lill for finding the real roots of
polynomial equations.

1. INTRODUCTION. There are many aspects to the mathematics of origami, or
paper folding. One may study combinatorial properties that emerge from folded paper.
One can study origami as mappings from the Euclidean plane into three-dimensional
space that have certain properties. But the oldest way to study origami mathematically
is as a method for geometric constructions. The idea is to take a piece of paper and fold
it, making a straight crease line. Then we unfold the paper and make another crease
line. In doing this we start locating points of intersection of our crease lines and thus
can try to construct geometric figures, like an equilateral triangle or the angle bisector
between two lines.

This is similar, of course, to straightedge and compass constructions, except it is not
immediately clear that the circle-making power of a compass could be duplicated by
origami since we can only make straight crease lines. A paper-folding skeptic might
thus be surprised to learn that origami constructions are actually more powerful than
those made by straightedge and compass. Origami can trisect angles (see [10, 12, 14,
22]) and double cubes (see [22, 23]), as well as solve general cubic equations (see
[1, 6, 9]).

But who was the first person to discover the full power of paper folding as a geomet-
ric construction tool? The credit goes to an Italian mathematician named Margharita
Piazolla Beloch in the 1930s [4]. Given this, it is perhaps more than a little embarass-
ing that numerous researchers since [1, 3, 6, 9, 22], including the author [10], have
failed to cite Beloch’s ground-breaking work. (Huzita, Scimemi [13], and Justin [14]
are notable exceptions.)

In this paper, we present Beloch’s proof that paper folding can solve arbitrary cubic
equations and thus solve the classic problems of angle trisection and doubling the cube.
At the same time, we will encounter a marvelous geometric method for finding real
roots of arbitrary polynomials due to Eduard Lill [19]. We finish with a more extensive
accounting of the history of origami geometric constructions, arguing that Beloch was,
indeed, the first person to discover the full power of normal paper folding.

2. BELOCH’S SQUARE. Like straightedge and compass constructions, any paper-
folding construction can be described as a sequence of elementary folding moves, or
axioms, as some call them. These basic moves can be classified by enumerating all of
the possible ways a single, straight crease line can be made by aligning given points
and lines to other points and lines already made on your paper [17]. Some examples
of these basic folding moves are:

doi:10.4169/amer.math.monthly.118.04.307
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O1: Given two points P1 and P2, we can make a crease line that places P1 onto P2

when folded.

O2: Given a line l and a point P not on l, we can make a crease line that passes
through P and is perpendicular to l.

For more information on these basic moves see [13] and [17]. Note, however, that the
above two basic moves can also be done by a straightedge and compass. The one basic
folding move which sets origami apart from straightedge and compass constructions
is the following:

The Beloch Fold. Given two points P1 and P1 and two lines l1 and l2 we can, when-
ever possible, make a single fold that places P1 onto l1 and P2 onto l2 simultaneously.
(See Figure 1.)

P1 P2

l1

l2

Figure 1. The Beloch origami fold.

One way to see what this fold is doing is to consider one of the point-line pairs. If we
fold a point P to a line l, the resulting crease line will be tangent to the parabola with
focus P and directrix l (the equidistant set from P and l). This can be demonstrated by
the following activity: Take a piece of paper, draw a point P on it, and let the bottom
edge of the paper be the line l. Then fold P to l over and over again. An easy way to
do this is to pick a point on l and fold it up to P , unfold, then pick a new point on l and
fold it to P , and repeat. After a diverse sampling of creases are made, the outline of a
parabola seems to emerge. Or, more precisely, the envelope of the crease lines seems
to be a parabola. (See Figure 2(a).) A proof of this can be established as follows: After
folding a point P ′ on l to P , draw a line perpendicular to the folded image of l, on
the folded flap of paper from P to the crease line, as in Figure 2(b). If X is the point
where this drawn line intersects the crease line, then we see when unfolding the paper
that the point X is equidistant from the point P and the line l. (See Figure 2(c).) Any
other point on the crease line will be equidistant from P and P ′ and thus will not have
the same distance to the line l. Therefore the crease line is tangent to the parabola with
focus P and directrix l.

(a) (b) (c)

P
P

X

P

X

P ′l ll

Figure 2. Folding a point to a line creates tangents to a parabola.
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In other words, folding a point to a line can be thought of as locating a point on a
certain parabola, which means that this is equivalent to solving a quadratic equation.

The Beloch fold can then be interpreted thusly: Folding P1 to l1 will make the crease
be tangent to the parabola with focus P1 and directrix l1, and folding P2 to l2 will make
the crease be tangent to the P2-focused and l2-directrixed parabola. In other words, this
origami fold finds a common tangent to two parabolas.

Now, two parabolas drawn in the plane can have at most three different common
tangents (for example, see Figure 3), suggesting that this origami fold is equivalent to
solving a cubic equation. Straightedge and compass constructions, on the other hand,
can only solve general quadratic equations.

Figure 3. Two parabolas drawn in the plane can have at most three common tangents.

Theoretically, we could end this paper right here, satisfied in the knowledge that
origami can solve cubic equations. (Specifically, on the projective plane, finding com-
mon tangents to two parabolas is the dual problem to finding intersections of conics,
which allows general cubic solutions to be constructed. See [1] and [28].) But Beloch
provides a constructive proof. She considers the following problem:

The Beloch Square. Given two points A and B and two lines r and s in the plane,
construct a square WXYZ with two adjacent corners X and Y lying on r and s, re-
spectively, and the sides WX and YZ, or their extensions, passing through A and B,
respectively. (See Figure 4.)

W A

B

Z
Y

s

X

r

Figure 4. The Beloch square.

Amazingly, this one construction problem captures everything we need not only to
construct 3

√
2 (thus solving one of the classic Greek construction problems, that of dou-

bling the volume of a cube) but also to solve arbitrary cubic equations. Furthermore,
this problem is readily solved via origami!

Here is how: We are given points A and B and lines r and s. Compute the perpen-
dicular distance from A to r and create a new line r ′ which is this same distance from
and parallel to r , so that r lies between A and r ′. Do the same with B and s to construct
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a line s ′. (See Figure 5, left.) Note that these lines r ′ and s ′ can be constructed easily
via paper folding by, say, folding along r , marking where A lands under this fold, and
then making a sequence of perpendicular folds O2 described above. (The details of
this are left as an exercise.)

B

A X r
r ′

A′
s

s′

B′

B

A r
r ′

A′
s

s′

B′

B

A r
r ′

s

s′ Y

Figure 5. Constructing the Beloch Square using origami.

We then perform the Beloch fold, folding A onto r ′ and B onto s ′ simultaneously.
(See Figure 5, center.) This will fold A to a point A′ on r ′ and B onto a point B ′ on s ′.
The crease made from this fold will be the perpendicular bisector of the segments AA′

and BB′. Therefore, if we let X and Y be the midpoints of AA′ and BB′, respectively,
we have that X lies on r and Y lies on s because of the way in which r ′ and s ′ were
constructed. The segment XY can then be one side of our Beloch square, and since
AX and BY are perpendicular to XY, we have that A and B are on opposite sides, or
extensions of sides, of this square.

3. CONSTRUCTING 3√2. Next we will see how Beloch’s square allowed her to
construct the cube root of two. (Actually, what follows is her construction set on co-
ordinate axes.) Let us take r to be the y-axis and s to be the x-axis of the plane. Let
A = (−1, 0) and B = (0,−2). Then we construct the lines r ′ to be x = 1 and s ′ to be
y = 2. Folding A onto r ′ and B onto s ′ using the Beloch fold will make a crease which
crosses r at a point X and s at a point Y . Consulting Figure 6, if we let O be the origin,
then notice that OAX, OXY, and OBY are all similar right triangles. This follows from
the fact that XY is perpendicular to AA′ and BB′.

B

A

r r ′

A′

s

s′B′

B

–4 –3 –2 –1 O 1 2 3 4

–3

–2

–1

1

–2

3

Y

X

Figure 6. Beloch’s origami construction of the cube root of two.

Therefore, we have |OX|/|OA| = |OY|/|OX| = |OB|/|OY|, where | · | denotes the
length of the segment. Filling in |OA| = 1 and |OB| = 2 gives us |OX| = |OY|/|OX| =
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2/|OY|. Finally, compute

|OX|3 = |OX| ·
|OY|

|OX|
·

2

|OY|
= 2,

and so X = (0, 3
√

2).
This construction is essentially the same as the one independently discovered by

Martin [22] fifty years later, although Martin takes B = (0,−k) so as to construct
X = (0, 3

√
k).

4. SOLVING CUBIC EQUATIONS. Beloch goes on to describe how her square
construction leads to a paper-folding method for finding real roots of arbitrary cubic
equations. For this she refers to “the famous procedure of Lill for the graphical res-
olution of equations of third degree” [4]. This “Lill’s method” does not seem to be
as famous now as it was in the 1930s. She is referring to an 1867 paper [19] by an
Austrian engineer named Eduard Lill. Felix Klein describes the cubic case of Lill’s
method in his 1926 book [16, p. 267], and he refers to it as well known as well. The
general method was described in a paper by Riaz in this MONTHLY in 1962 [24], but
since more recent citations of Lill’s method are rare, we will reproduce this elegant
method here.

Suppose we are given a polynomial f (x) = an xn
+ · · · + a1x + a0 with real coeffi-

cients and we would like to locate a real root of f (x), if one exists. Lill suggests doing
this geometrically by creating a path in the plane based on the coefficients of f (x).

Imagine a turtle is sitting at the origin O and facing in the direction of the positive
x-axis. (Note that Lill did not use a turtle in his original exposition, but the analogy to
modern turtle graphics makes the metaphor especially apt.) The turtle will walk along
the positive x-axis a distance equal to the coefficient an . Then the turtle will turn 90◦

counterclockwise and walk a distance equal to the next coefficient an−1. The turtle
will then turn again and repeat this process until ending at a point T after traveling
a distance a0 in some direction. If any of the coefficients are negative then the turtle
will walk backwards and that side of the turtle path will be considered to have negative
length. (E.g., in Figure 7(b) the sides marked a3, a2, and a0 all have negative length.)
If any of the coefficients are zero then the turtle will still turn but walk a distance of
zero.

After the turtle has made this path we will position ourselves at O and then attempt
to “shoot” the turtle at T in the following way: We imagine that we are living in a

a3

a2

a1

a0
a4

a5 a5

a4

a3

a2

a1

a0T

O O

T

(a) (b)

Figure 7. Lill’s method turtle and bullet paths (a) for a quintic with all coefficients positive and (b) a quintic
with a3, a2, a0 < 0 and a5, a4, a1 > 0.
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universe where bullets bounce off walls at 90◦ angles. We fire a bullet from O at the
line containing the turtle path segment of length an−1. This bullet will ricochet off this
line at a right angle, then ricochet off the line containing the side of length an−2, and
so on. Note that the act of 90◦ ricocheting is ambiguous, since sometimes we want it
to bounce off the line on the same side as the bullet’s approach, while other times we
want it to bounce through the line (but still at a right angle). In all cases, we make sure
to choose the option that will allow the bullet to actually hit the next side of the turtle
path. See Figure 7. If we are able to “hit” the turtle in this way, then the bullet path
will have n sides and our turtle path n + 1 sides.

Let θ be the angle that the first part of our bullet path makes with the x-axis (which
contains the an side of the turtle path), assuming that we are actually able to hit the
turtle.

Claim. x = − tan θ is a root of f (x).

Our proof of this will assume that all our coefficients are positive, and so our turtle
and bullet paths will be as in Figure 7(a). The cases with coefficients negative or zero
are left as an exercise.

Notice that the sides of the bullet path are the hypotenuses of a sequence of similar
right triangles whose legs lie along the turtle path. Let yk be the length of the side
opposite the angle θ in the triangle whose side adjacent to θ is part of the segment of
length ak . Then we get

yn = (tan θ)an = −xan

yn−1 = (tan θ)(an−1 − (−xan)) = −x(an−1 + xan)

yn−2 = (tan θ)(an−2 − (−x(an−1 + xan))) = −x(an−2 + x(an−1 + xan))

...

y1 = −x(a1 + x(a2 + · · · + x(an−2 + x(an−1 + xan)) · · · )).

But y1 = a0. Equating these two values for y1 and simplifying gives us f (x) = 0.
If no value of θ will allow us to hit the turtle, then f (x) must have no real roots.

Lill’s method is nothing short of amazing, and it gets better. The bullet path turns
out to be similar (in the geometric sense) to the turtle path one would obtain from the
polynomial f (x) with (x + tan θ) factored out. For example, Riaz [24] demonstrates
this with the polynomial x3

− 7x − 6. This has three real roots, and each one corre-
sponds to a different angle θ to shoot the turtle. If we pick one, say the one which
gives the root x = 3, then the bullet path will be a rotated dilation of the turtle path
for the polynomial x2

+ 3x + 2. (If the reader has dynamic geometry software avail-
able, it can be used to demonstrate Lill’s method very convincingly, and this is highly
recommended.)

Beloch’s stroke of brilliance in paper-folding constructions was in seeing that Lill’s
method in the cubic case is just an application of her square construction. Indeed, in
the cubic case our turtle path for a3x3

+ a2x2
+ a1x + a0 will have four sides, so our

bullet path will have three sides. If we think of O as the point A, and T as the point
B, and we think of the lines containing the a2-side and the a1-side as the lines r and s,
respectively, then a Beloch square with adjacent corners on r and s and opposite sides
passing through O and T will give us a bullet path to shoot this turtle. (See Figure 8.)
Therefore paper folding can be used to perform Lill’s method in the cubic case and
thus solve general polynomials of degree three.
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Figure 8. Lill’s method, cubic case, is really constructing a Beloch square.

5. ORIGAMI GEOMETRY HISTORY AND FUTURE. The idea of using paper
folding as a geometric construction tool has unknown origins. Ancient Japanese san-
gaku (mathematical problems painted on wooden tablets and hung in shrines, circa
1600–1890) have been found that depict paper-folding geometry problems, indicat-
ing that the Japanese have mathematical as well as religious and artistic traditions in
origami [8]. But the first known treatise on paper-folding constructions is T. Sundara
Row’s book Geometric Exercises in Paper Folding [25], first published in 1893. This
book was mentioned by Felix Klein in one of his popular math books of the time [15],
and this seems to have helped popularize paper-folding geometry. Beloch herself states
that Klein was the first to attract students to Row’s book with his “autorevole giudizo”
(authoritative judgement) [4]. However, Row does not try to classify the basic origami
moves (axioms). He defines paper folding very broadly, employing folding moves as
needed that place points and lines onto previously constructed points and lines, and he
does not mention or make use of anything like Beloch’s fold. In fact, Row mistakenly
claims that it is impossible to construct the cube root of two exactly with paper folding
[25, Section 112].

Row and Klein seem to have sparked a general interest in the geometry of paper
folding in the early 1900s. A number of papers appeared around that time focusing on
solving quadratic equations elegantly via origami, all of which cite Row as a primary
influence. For examples, see Lotka’s 1907 School Science and Mathematics paper [21]
and Rupp’s 1924 paper in this MONTHLY [26].

In 1930 Giovanni Vacca wrote an article [27] in the Italian journal Periodico di
Mathematiche whose title translates as “On the folding of paper applied to geometry.”
In it Vacca briefly describes the history of paper folding, tracing it back to Chinese and
Japanese origins (although some of these are clearly speculative), and then proceeds to
describe everything that is known about the connections between origami and geome-
try at the time, including references to Row, the influential educator Friedrich Froebel,
and others. He summarizes how origami can solve quadratic equations, but makes no
mention about whether or not origami could solve cubics. Vacca does not, however,
repeat Row’s claim that origami cannot construct cube roots.

This set the stage for Margherita Piazzolla Beloch, an algebraic geometer at the
University of Ferrara, Italy. She was born in 1879 and was the daughter of the Uni-
versity of Rome’s renowned historian Karl Julius Beloch. She received her doctorate
in mathematics in 1908 at the University of Rome under Guido Castelnuovo. She held
positions at the University of Pavia and Palermo, working with Michele de Franchis.
In 1927 she was made Chair of Geometry at the University of Ferrara, where she
remained until her retirement in 1955. While her primary research was in algebraic
geometry, many of her papers were on the application of geometry to photogram-

April 2011] SOLVING CUBICS WITH CREASES 313



metry, the study of computing three-dimensional image data from photographs, such
as x-ray or aerial images. Beloch passed away while living in Rome in 1976 [20].

In 1936 Beloch published “Sul metodo del ripiegamento della carta per la risolu-
zione dei problemi geometrici” (On the method of paper folding for the resolution
of geometric problems), in the journal Periodico di Mathematiche [4]. She describes
this paper as an extract from a mathematics course she taught at Ferrara during the
academic year 1933–34. This, together with Vacca’s 1930 paper, seems to be strong
evidence that Beloch was the first to discover that origami can find common tangents
to two parabolas by folding two points to two lines simultaneously and thus solve
general cubic equations. Beloch was also quick to note that since solving quartics can
be reduced to solving cubics and quadratics, we know that origami can find real roots
of quartic equations.

Since then it has been demonstrated that the Beloch fold is the most complicated
paper-folding move possible [17]. By this we mean that if one tries to write a list of all
possible origami moves (like O1 and O2 described earlier) that only produce a single,
straight crease line, then no other such origami move will give us more algebraic power
than the Beloch fold. In other words, Beloch’s work does, in fact, determine the con-
structible limit of normal paper folding.

To clarify, however, this work concerns only straight-crease, one-fold-at-a-time
origami. Other directions in origami constructions can and have been explored. Fold-
ing curved creases (not straight lines) is possible, although difficult [7], and spoils the
construction game completely by allowing transcendentals like π to be constructed
[11]. Also, Robert Lang has demonstrated that if we allow ourselves to make simulta-
neous creases, i.e., an origami move that produces more than one crease line, made in
unison (such origami moves are called multifolds), then arbitrary angle quintisections
can be performed [18]. In fact, Alperin and Lang have recently shown that if three
simultaneous creases are allowed, then arbitrary quintics can be solved [2]. They use
the quintic case of Lill’s method to demonstrate that this can be done in theory, al-
though actually performing such a complex fold seems physically impossible to do in
general. Furthermore, Chow and Fan argue [5] that roots of polynomials of arbitrary
degree can be found if any number of simultaneous folds are allowed. Nonetheless,
Beloch deserves the credit for first discovering the geometric limits of origami that
mere mortals are able to perform.
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L’Ouvert: Journal of the APMEP of Alsace and the IREM of Strasbourg 42 (1986) 9–19.

15. F. Klein, Famous Problems of Elementary Geometry, Ginn, Boston, 1897.
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